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Abstract 
 
Dynamically recompiling from one machine code to another can be used to emulate 
modern microprocessors at realistic speeds. This report is a discussion of the 
techniques used in implementing a dynamically recompiling emulator of an ARM 
processor for use in an emulation of a complete computer system. 
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1. Introduction 
 
1.1. What is emulation? 
 
Emulation allows software written for one computer system to be run on another. It 
does this by simulating the low level behaviour of the emulated hardware. The 
software’s instructions are then followed and the emulator updates its state in the 
same was as the original machine would have done to its own registers and memory. 
As a result, the software can be made to run on another system identically to the way 
it would run on the system it was written for, despite the fact that the two may have 
different underlying hardware. 
 
1.2. Applications of emulation 
 
Emulation is an incredibly useful technique that has many different applications to 
problems across the field of computer science and the computing industry. These 
applications range from issues concerning the oldest computers to the very latest 
technologies. The following sections discuss some of these applications. 
 
1.2.1. Backwards Compatibility 
 
Backwards compatibility with older systems (especially when application source code 
is no longer available) is often only possible through emulation. In business, 
emulation allows old hardware to be replaced without losing the use of the software 
that ran on it. In this way, emulation provides a cheap alternative to rewriting software 
from scratch for the new hardware. 
 
In consumer computer systems, providing emulators for previous models has proved a 
successful way of migrating a customer base to the new generation of computers. For 
example, Acorn were able to lure customers to their 32 bit models by providing an 
emulator of their established BBC Micro range. Additionally Acorn was able to 
convert customers from other platforms by providing an emulator of an IBM-
compatible PC. 
 
1.2.2. Portability 
 
Emulation techniques can provide the capability of creating software that can run on 
any computer system without alteration. This is done by implementing an emulation 
of an abstract processor or ‘virtual machine’ (i.e. one that does not already exist) on 
various platforms. Compilers that convert programs into code for that virtual machine 
are then developed so that any program created using them can run on any of the 
systems that have an implementation of the virtual machine. 
 
This concept is at least partially credited for the success for the Pascal language with 
the introduction of P-code in the late 1970s [1]. More recently, virtual machines have 
become prominent with the growth of the inherently multi-platform Internet. This has 
caused great interest in Sun Microsystems’ Java language which compiles to a 
bytecode that runs on a Java Virtual Machine (JVM). 



 8

 
1.2.3. Software Development 
 
For some platforms, developing and testing software on the system itself is not always 
feasible. This might be because the hardware is still being developed, or in the case of 
embedded or portable systems, it may be expensive or time-consuming to install the 
software for testing. In conjunction with cross-platform development tools, emulators 
are commonly used to bridge the gap so that software can be developed quickly and 
cheaply before being implemented on the real hardware for final testing. Emulators 
such as SPIM [2], which emulates a MIPS processor, can provide a test environment 
for software that has features not available on the actual machine, for example with 
real breakpoints [3]. 
 
1.2.4. Hardware Development 
 
As the complexity of microprocessors has grown, emulation of new processors has 
often been used during the design phase. In the development of the ARM processor, 
emulations of the design were used from an early stage to verify the processor’s logic. 
 
In some processors, emulation is built into the hardware for backwards compatibility, 
for example the 16 bit 65816 processor (used in the Super Nintendo game console) 
can emulate in hardware the 8 bit 6502 processor (used in the older Nintendo 
Entertainment System) [4]. Other processors, such as the Crusoe range produced by 
Transmeta, have made emulation a central part of their design. By using dynamic 
binary translation techniques at a low level inside the processor, Crusoe processors 
are able to emulate an x86 processor at a comparable speed to the real thing but using 
less power [5]. 
 
1.2.5. Historical preservation 

Figure 1- Screenshot of the Manchester Baby emulator, the original was built in 1948 

 
Building replica machines of the first computers from the early 1940s is a time 
consuming and costly business. In order to preserve the ‘feel’ of the first computers, 
historians have developed emulators of these early machines, such as Martin 
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Campbell-Kelly’s Warwick EDSAC Simulator [6] and my own Manchester Baby 
Simulator [7], shown in Figure 1. Since the original machines have often been 
destroyed over the years, these emulators continue to provide cheap and widespread 
access to them. 
 
In recent years, the first home computers of the early 1980s have been superseded by 
systems more than powerful enough to emulate them. Sentimental attachment to the 
older computers has motivated many programmers to develop emulators for them on 
their modern home computers. This has gathered momentum resulting in a wealth of 
emulators covering almost every consumer computer ever made. Increasingly the 
emulator authors are striving to emulate the latest technology, resulting in the 
situation where systems that are still being sold commercially are already available 
under emulation for free. 
 
1.3. Processor emulation techniques 
 
1.3.1. Importance of CPU emulation 
 
The emulation of the central processing unit (CPU) is one of the core parts of any 
emulator in the same way the real CPU is one of the core parts of any computer. To 
emulate a processor running at 8 MHz, assuming a conservative average of 2 cycles 
per instruction (which is fair for an ARM2 processor) requires the emulator to 
emulate around 4 million instructions per second. From this it is clear that the CPU 
emulation can consume a large fraction of the processing time in any emulator, and 
therefore that the CPU emulation is extremely important for the emulator’s overall 
performance. 
 
There are several types of CPU emulator: the type chosen depends on the 
requirements placed on the emulator. The terminology and general concepts of these 
classifications are derived from concepts in compiler design, with the emulated 
machine’s code being treated as the source language to the interpreter or compiler. 
 
1.3.2. Interpreter 
 
Interpreting emulators work in much the same way as the emulated processor’s fetch-
decode-execute loop, shown in Figure 2. The emulated environment is first initialised 
to a known start state, which tends to involve setting the emulated registers, memory 
and interrupt timers to their initial values (as they would be on the real machine). The 
emulator then proceeds fetching the next instruction from emulated memory. The 
fetched instruction is then decoded in order to select the emulator’s corresponding 
subroutine. The selected subroutine is then called which updates the emulated 
environment’s registers and memory in the same way as that instruction’s execution 
would have updated the machine’s registers and memory. The whole process then 
repeats. 
 
This method has several advantages: 

•  It is relatively simple to design and implement. 
•  It has relatively low memory requirements, since there is no data stored other 

than the emulated environment. 
•  There are no problems handling self-modifying code. 
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Figure 2 - The Fetch-Decode-Execute loop of a processor or interpreting emulator 

 
Because of these advantages, particularly the simplicity, most emulators are 
implemented using this method. In emulators for embedded and portable devices, 
memory constraints can make interpreting the only feasible solution (for example the 
Java Virtual Machine for the Psion Series 5mx [8]). However, the interpreting method 
suffers the significant disadvantage of being the slowest approach. 
 
The reason for this is that interpreting emulation is a fairly naïve algorithm that 
ignores the principle of locality (as utilised in processor caches) [9]. This is an 
empirical observation that an "[emulated] program spends 90% of its time in 10% of 
its code". There are three aspects to this principle: 
 

Temporal locality – once an instruction is executed it is likely to be executed 
again soon. 

Spatial locality – the next instruction is likely to be near the current 
instruction. 

Sequential locality – the next instruction is likely to be immediately after the 
current instruction. 

 
An interpreting emulator only takes into account the current instruction being 
emulated. It is unable to utilise any previous times the instruction may have been 
emulated or the instructions emulated before and after it. As a result, the same 
sequence of instructions in a loop has be fetched and decoded unnecessarily by the 
emulator many thousands of times. The problem is summarised by the philosopher 
George Santayana’s comment that, “those who cannot remember the past are 
condemned to repeat it” [10]. Fortunately other more complex emulation methods 
exist that are able to take advantage of the principle of locality. 
 
1.3.3. Dynamic Recompiler 
 
Dynamic recompilation is one method that attempts to avoid the shortcomings of 
interpreting emulators. Rather than only looking at the current instruction being 
executed, dynamic recompilers act on chunks of sequentially emulated instructions. 
The idea is that by storing information about that chunk the first time it is emulated, 
using this information will make all of its subsequent emulations faster. This is the 
same idea used by processor caches in transferring executed code to a faster storage 
area to benefit subsequent executions. 
 
A dynamic recompiler identifies a section of code to be emulated and checks to see if 
it has been emulated before. If it has not then the dynamic recompiler generates a 
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Instruction

Decode
Instruction

Execute
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chunk of native machine code (i.e. machine code for the computer that the emulator is 
running on). This code updates the emulated environment as if those instructions had 
been emulated. Every successive time that this section of code needs to be emulated, 
the native machine code chunk is executed again, removing the need for repeated 
fetching and decoding of emulated instructions. By repeatedly identifying sections of 
code and executing machine code for them as shown in Figure 3, the emulated 
environment’s state is updated correctly. 
 

Figure 3 - The dynamic recompilation decision process 

 
Dynamic recompilers have the advantage that they are significantly faster than 
interpreting emulators. However, they can have large memory overheads as a result of 
storing many chunks of native code for long periods of time, making them unsuitable 
for some embedded applications. 
 
1.3.4. Threaded Code 
 
Threaded code [11] works in a similar way to dynamic recompilation. However, 
rather than generating native machine code, a list of addresses of handwritten 
subroutines is generated, that performs the emulation for each instruction. The list is 
stepped through one by one and each subroutine called to emulate the instructions, as 
shown in Figure 4. Since each handwritten subroutine is fixed during development, 
they are not as flexible and therefore not as fast as code generated by a dynamic 
recompiler. However, threaded interpreters do have the advantage that they are easier 
to implement and can be completely portable to a new platform with no modification 
as they need not use any machine code [12]. For languages such as Java that execute 
on a virtual machine which does not lend itself to having its code dynamically 
generated in this way (because of security requirements), threaded code is a good 
alternative to an interpreter to improve the performance of an emulator. 
 
Both dynamic recompilers and threaded code can incur problems as a result of 
caching the information they generate. If the program code at an address in emulated 
memory changes, whether because a new program is loaded, the memory map 
changes, or the program is self-modifying, the previously generated code that is 
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associated with that address will be incorrect. How often this occurs on the emulated 
system can affect the benefits gained from caching this information. 

Figure 4- The execution of threaded code 

 
1.3.5. Static Recompiler 
 
Rather than recompiling code at run time (during emulation) as is done in a dynamic 
recompiler, static recompilers generate all the code before hand in the same way as a 
traditional programming language compiler. This has the benefit that that there is no 
time-consuming recompilation process when the emulation is running, making the 
emulation faster. The generated code can also be more optimal than that generated by 
a dynamic recompiler since better optimisation techniques can be applied that are too 
time-consuming to use dynamically. 
 
Translating machine code before run-time can have complex problems. An inability to 
differentiate program code from data is one such problem. This is complicated by 
calculations that manipulate the value of the program counter. For example, the 
following section of ARM code shows a jump table that might be compiled from a C 
switch statement. This code could set the pc to a very large range of values 
depending on the value of r0 which is difficult to determine at compile time. 
 

add pc,pc,r0,lsl #2 ; pc = pc + (r0 * 4)
mov r0,r0 ; nop for pipeline effect
b case0 ; go to case0 if r0 is 0
b case1 ; go to case1 if r0 is 1
b case2 ; go to case2 if r0 is 2

.

.

.

 

add

mov

cmp

ldr

addresses to subroutines subroutines

virtual program
counter
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Static recompilers alone cannot cope with code modification at run time as they have 
no way of updating the code that they execute. The only way that they can support 
this is to additionally implement one of the other three emulation methods to fall back 
on. As a result, static recompilers are not particularly suited to emulating an entire 
computer system, where code is frequently changed by loading new programs. 
 
Static recompilation is better suited to the field of binary translation where attempting 
to convert a single executable program from one platform to another as such code 
modification is not normally an issue. Multi-platform operating systems such as 
Windows NT, Solaris and various flavours of Unix, then provide the environment that 
the program is executed in, rather than fully emulating a computer system as with 
normal emulation [13]. 
 
1.3.6. Summary 
 
In summarising this review of the different CPU emulation techniques it is important 
to emphasise that dynamic recompilation techniques allow the fastest execution of 
emulated instructions, without the limitations of static recompilation. 
 
1.4. This Project 
 
1.4.1. Motivations 
 
Most of the hundreds of emulators developed in the past few years emulate systems 
that are outdated and from the previous generation of computing to the systems being 
used to emulate them. As a result, the power of the host system dwarfs that of the one 
being emulated and performance is not a problem. 
 
However, any emulator that attempts to model a more recent system has a significant 
challenge, as the complexity of modern processors is an order of magnitude greater 
than earlier systems. As well as being more complex, these emulated processors have 
clock speeds that are a reasonable proportion of the host system’s processor clock 
speed. In order to emulate such modern systems at a reasonable speed, difficult 
approaches to emulation such as dynamic recompilation have to be employed. 
 
Several dynamic recompilers have been developed in recent years to meet such 
demands. Unfortunately almost all have significant limitations. Commercial emulators 
such as VirtualPC [14], Ardi’s Executor [15] and Apple’s DR emulator [16], while 
impressive, tend to limit the information released to brief overviews in white papers 
(for commercial reasons). Many of the ground-breaking, freely available emulators 
such as UltraHLE [17], Corn [18] and PSEmu Pro [19] remain closed source and little 
information is released about their techniques. Other free emulators, that are open 
source, tend to lack documentation and use primitive techniques (such as direct 
translation and pre-assembled templates, see section 5.2). Additionally many of these 
emulators are for video game consoles that do not suffer the same complexities as 
emulators for computer systems (such as a full operating system, and an ability to 
load multiple programs). 
 
Developments in Java Virtual Machine technology have been a good source of 
information on dynamic recompiling methods. However, due to the nature of stack-
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based java bytecode relative to register-based machine code, many significant 
problems have been ignored (such as condition flags, interrupts and exceptions). 
Academic research on the subject tends towards the problems of binary translation 
[20], erring towards the complexities of static recompilation and retargetablity and 
away from emulating a full computer system. 
 
As a result of these limitations there is a significant omission in the computing 
literature concerning emulating real computer systems using dynamic recompilation, 
something I hope to rectify with this report. 
 
1.4.2. Aim 
 
The aim of this project is to emulate as accurately as possible a modern 
microprocessor, the ARM, using dynamic recompilation techniques. 
 
1.4.3. Previous work 
 
There are several ARM emulators already in existence that have been developed for 
various purposes:- 
 

ARMulator ARM Ltd’s own very accurate emulator of most models 
of ARM processor, designed to be flexible enough to 
debug developing software or alternatively completely 
model every aspect of the inner workings of the 
processor. [21] 

 
ArcEm The first Acorn Archimedes emulator. This makes use 

of a modified version of the ARMulator for the ARM 
emulation. [22] 

 
ARM2 Only able to run simple programs in BBC BASIC as an 

alternative to the Unix shell. [23] 
 

Archie The first Acorn Archimedes emulator for MS DOS. [24] 
 

SWARM Used to model the internal ARM data path to facilitate 
research into possible modifications. [25] 

 
Red Squirrel The first Acorn Archimedes emulator for Windows.[26] 

 
ARMphetamine A dynamically recompiling emulator for a subset of the 

ARM processor. Unfortunately support for exceptions, 
interrupts and processor modes was omitted. [27] 

 
Sleeve User mode emulator for use with Riscose [28], an 

implementation of the RISC OS API for Linux. 
Unfortunately it does not support exceptions or other 
processor modes. [29] 
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Leeds Model An executable formal specification of an ARM6 
processor written in SML for use in a formal 
verification. [30, 31] 

 
Unfortunately, many of these existing emulators such as ARMulator, SWARM and 
the Leeds Model are used for purposes other than emulating a real machine. Others 
such as ARM2, ARMphetamine and Sleeve are designed to only run a limited amount 
of application-level code and are not suitable for emulating a complete machine. The 
remaining three, ArcEm, Archie and RedSquirrel all emulate an ARM processor, 
though suffer from the inherent speed problems associated with interpreted emulation. 
 
1.4.4. Approach 
 
The accuracy of a CPU emulator is extremely hard to measure. This can be done 
empirically by compatibility (what software can run), or quantitatively by 
completeness (how much of the processor’s facilities it emulates). Different levels of 
completeness might include support for: 
 

•  small stand-alone programs in a test environment. 
•  interrupts 
•  exceptions 
•  processor modes 
•  coprocessors 

 
To develop the dynamic recompiler to support as many of these as possible, it is 
helpful to emulate all the other hardware (MMU, graphics etc.) required by a system. 
This allows scope for using real applications and operating systems to be emulated as 
tests of accuracy. 
 
Given the anticipated time scale and the size of the problem of implementing a 
dynamic recompiler, efforts had to be taken to reduce the workload. Rather than 
attempt to implement the dynamic recompiler as well as the emulation of the rest of 
the hardware, the approach taken is to make use of an existing (interpreting) emulator 
for a complete system. By removing the CPU emulation implemented by a third party 
and adding the dynamic recompilation in its place, the remainder of the system 
emulation can be utilised as required without distracting from the development of the 
recompiler. 
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2. Analysis 
 
2.1. Introduction to the ARM 
 
2.1.1. Background 
 
The ARM processor was the first commercial 32 bit RISC processor. It was 
developed at Acorn (ARM originally standing for Acorn RISC Machine), in the mid-
1980s in an effort to develop a processor for use in their new range of computers to 
succeed the 8 bit 6502-based BBC Micro. 
 
The majority of Acorn’s processor research team in collaboration with Apple were 
later spun-off as a separate company, ARM (Advanced RISC Machines) Ltd. Today 
the ARM design is licensed to over 50 semiconductor companies who manufacture 
the processors, including many of the largest names in computer hardware, as shown 
in Figure 5 [32]. 

Figure 5 - ARM's semiconductor partners who manufacture the processors 

 
As a result of the low price and low power consumption of the ARM, it has been 
widely adopted for embedded systems and portable devices such as mobile phones. It 
has also been used in a wide range of consumer computers from desktop machines 
such as Acorn’s RISC OS series (for which it was originally designed) to home 
consoles such as the 3DO and the Sega Saturn console (where the ARM is used for 
sound processing), as well as arcade machines such as the Sega NAOMI system. The 
ARM has really become known for use in portable devices such as the Apple Newton, 
the Psion Series 5 and Nintendo’s Gameboy Advance handheld games console, shown 
in Figure 6. With over 400 million ARM-based systems being produced in the year 
2000, up from 182 million the previous year, the rate of growth of ARM products has 
been phenomenal. 
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Figure 6 - The Nintendo Gameboy Advance, one of many portable ARM-based devices. 

 
2.1.2. Technical introduction 
 
Parts of the ARM design were based on the concepts of the Berkeley RISC chip [33], 
developed by postgraduates at the University of California at Berkeley in the early 
1980s. The ARM adopted some of the RISC concepts, such as a load-store 
architecture (memory access is only possible through explicit load and store 
instructions), fixed length instructions (all instructions are encoded in 32 bits) and 3-
address instructions (i.e. a destination and two operands). Other RISC-specific 
concepts, such as delayed branches and every instruction executing in a single cycle, 
were rejected. The designers at Acorn were forced to keep the architecture very 
simple as they had insufficient processor design experience to attempt anything more 
complex [34]. As a result, Steve Furber, one of the lead designers of the ARM, noted 
that it is, “less radical than many subsequent RISC designs” [35]. 
 
The ARM has 15 general-purpose registers; the 16th being dedicated to the PC, fewer 
than for many RISC processors (most having at least 32) but significantly more than 
most CISC processors. In true RISC style, only simple operations can be performed in 
an ARM instruction, leading to the divide operation and other more complex 
operations being omitted. The instruction set is extremely orthogonal to the extent that 
even the PC can be used as the operand or destination of most instructions. 
 
One of the major strengths of the ARM design is its flexible attitude to condition 
flags. Every single ARM instruction is conditionally executed depending on the status 
of the condition flags. In other processors, conditional execution is only available on 
branch instructions (i.e. to jump to a subroutine if a condition is satisfied). After the 
influence of the RISC concept, conditional execution has often been extended to 
move (on x86) and test instructions (on MIPS) to reduce the number of conditional 
branches needed. The caveat to this flexibility on the ARM is that additionally all 
instructions have to be able to adjust or not the condition flags. 
 
The other major strength is the ability to perform logical, arithmetic and rotational 
shifts on instruction operands, while still only taking up a single clock cycle. This 
combined with the 3-address structure allows incredible flexibility in a logic or 
arithmetic instruction. Additionally the ARM has extremely flexible block memory 
access instructions. These allow any combination of the 16 registers to be stored to or 
loaded from memory in a single instruction. Although not comprehensive (i.e. unable 
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to even perform a divide), the flexibility of individual ARM instructions makes them 
extremely powerful. 
 
The uninitiated reader is directed to Appendix A for an overview of the ARM 
assembly language. This is useful both to get a feel for the subject of this project and 
as a brief tutorial to ARM instructions, knowledge of which is necessary for 
understanding the examples in this report.  
 
2.2. Identifying the problem 
 
2.2.1. Other source processors considered 
 
In the very early stages of planning, the ARM was not the only processor considered 
as the subject for the dynamic recompiler. 
 
Many of the open-source hobby emulators available are for systems that use early 8 
bit processors such as the MOS 6502 and Zilog Z80. These would be relatively simple 
candidates to implement and running at clock speeds of less than 4 MHz are able to be 
emulated at many times their real speed using interpreting emulation, making a 
dynamic recompiler interesting but unnecessary. Motorola’s 16 bit 68000 processor 
was also a candidate, though because of an existing project to create a dynamic 
recompiler for it (as well as being competently emulated using interpreting methods 
[36]) it too was rejected. 
 
Emulating a 32-bit Intel x86 processor around the level of an 80386 was briefly 
considered but rejected because the myriad of different instructions and idiosyncrasies 
could make it incredibly difficult to implement accurately. Additionally, despite the 
x86 being so pervasive in home computing, having its origins in the earliest 
processors of the 1970s means that it is not a typical modern architecture. Any 
successful emulation while commercially valuable would be of limited use for 
emulating other architectures. 
 
The MIPS (Microprocessor without Interlocking Pipeline Spurs) processor, another 
32 bit RISC architecture developed around the same time as the ARM, was a strong 
candidate. With MIPS processors having been used in both the Sony Playstation and 
Nintendo Ultra 64 games consoles, there are several open source emulators available 
for both platforms (some of which implement a crude form of dynamic recompilation) 
that could have been used. The MIPS is a more radical RISC design than that of the 
ARM, doing away with condition flags completely (instead conditional branches test 
register values [37]), which would simplify the implementation of a dynamic 
recompiler. The MIPS design goes to extraordinary lengths to optimise use of 
pipelining, with delayed branches and “bizarre” [38] effects such as multiply and 
divide operating outside the main pipeline. As a result, techniques developed for a 
MIPS dynamic recompiler would be unique to that project and might have less 
relevance to dynamic recompilers for other architectures. 
 
The ARM was settled on for various reasons. The apparent simplicity of individual 
instructions and limited number of different operations meant that there are few 
complications (such as floating point or division) on top of the dynamic recompilation 
issues, or so it seemed initially. Other factors in the ARM’s favour were the 
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availability of well-structured source code to emulators for Acorn RISC OS ARM-
based machines and the difficulties of emulating an ARM processor at real world 
speed, a strong motivating factor. Additionally the relatively un-radical design of the 
ARM means that a dynamic recompiler for it still has relevance to dynamic 
recompilers for many other architectures both old and new, RISC and CISC. 
 
2.2.2. Which ARM architecture? 
 
As a reflection of the multitude of different applications of the ARM processor, there 
are many configurations of ARM core currently marketed by ARM Ltd. and still more 
that are outdated. The question of which one to focus on for this project was carefully 
considered. 
 
The original Acorn design for the ARM processor stored the PSR (Processor Status 
Register) in r15 along with the PC, only allowing space for a 26-bit-PC, as shown in 
Figure 7. After ARM was spun off as a separate company, their later designs 
separated the PSR and PC, allowing a full 32-bit-PC giving increased address space (4 
Gb as opposed to 64 Mb). Most of these new processors retained the ability to execute 
26-bit-PC ARM code for backwards compatibility, almost solely to support Acorn’s 
RISC OS operating system which was written largely in 26-bit-ARM assembly. 

Figure 7 - R15 in 26-bit-PC ARM processors, containing both the PC and PSR 

 
Other later additions to the ARM design have included the Thumb instruction set (a 
16 bit encoding of a subset of the ARM instruction set), a 5-stage rather than 3-stage 
pipeline, 64 bit-result multiplication and Java bytecode execution [39]. These later 
additions do not have particularly wide ranging consequences for the core of the 
ARM emulation and could all be added to an ARM dynamic recompiler relatively 
easily later on. 
 
It was decided that supporting both 32-bit-PC and 26-bit-PC modes in the initial 
development would be too much effort with no benefit for the recompilation 
techniques. Choosing 32-bit-PC emulation would be easier since the complexities of 
the combined PC and PSR would not arise. Additionally it would be similar to all 
recent ARM developments. In contrast choosing 26-bit-PC emulation would be 
harder, would not be as relevant to recent ARM developments but had the significant 
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advantage that it could be used to run RISC OS, allowing use of the large library of 
RISC OS programs for testing. 26-bit-PC mode was chosen for the available software 
and the challenge of the combined PC and PSR, with the issues of the 32-bit-PC mode 
being seen as a subset of those of the 26-bit-PC mode. 
 
The architecture decided upon was the ARM architecture version 2a as implemented 
by the ARM3 processor. This was the final ARM processor without 32-bit-PC 
support, as used in the Acorn A5000 computer. The functionality of this architecture 
is a subset of that in architecture versions 3 and 4 (ARM6xx, ARM7xx, ARM8xx and 
StrongARM processors) for backwards compatibility [40]. 
 
2.2.3. System emulator 
 
Red Squirrel was chosen as the emulator the dynamic recompiler was to use for 
development and access was granted to the source code. Red Squirrel was favoured as 
it was still under active development by the author, the source was well structured 
with clearly separate CPU emulation and it is built using a good interactive 
development environment (Visual C++). It is important to remember that although 
Red Squirrel has been used during development, the dynamic recompiler is designed 
to have a clean generic interface so that it can be used with any emulator for an ARM-
based system. 
 
2.2.4. Target processor 
 
The principal target processor chosen was the 32-bit Intel x86 processor, as used in 
modern IBM-compatible PCs. This was selected largely because Red Squirrel was 
available for the platform. Additionally the x86’s gargantuan CISC instruction set is 
practically the antithesis of the ARM’s clean RISC design. As a result, converting 
from ARM to x86 (RISC to CISC) provides a challenging problem. 
 
2.3. Getting started 
 
2.3.1. Preparation 
 
Before approaching a problem of this scale, considerable time was spent researching 
methods used in other emulators and relevant technologies. Many different emulators 
and dynamic recompilers for various platforms were investigated. Work in similar 
fields such as JVM technology, binary translation and optimising compilers was also 
found to be relevant although sometimes not practical. Additionally a lot of learning 
about the ARM and x86 architectures was necessary, studying every detail from 
various reference manuals. 
 
2.3.2. Design overview 
 
The dynamic recompiler is only a part of this project. In attempting to accurately 
convert fragments of arbitrary programs from one machine code to another, thousands 
of times a second, there is significant groundwork to prepare. There are two main 
parts to this work, an ARM disassembler necessary for debugging the rest of the 
development and an interpreting ARM emulator. This interpreter was to prove 
invaluable for investigating the problem, debugging and for making design decisions 
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that could not be made any other way, it also forms a fundamental part of the 
complete system. 
 
The early stages of the Fusion method for object-oriented design were employed to 
identify the relationships between various parts of the system. Unfortunately, this high 
level approach was inappropriate to be continued into the intricate details of the 
emulation that make up the majority of the project. 
 
2.3.3. Implementation 
 
The implementation details of the project were restricted, based on the choice of Red 
Squirrel as the system emulator to be used. The Microsoft Visual C++ development 
environment was used to develop the dynamic recompiler. C++ was deemed a 
suitable language because of its low level features such as shifting and structure 
unions, its speed relative to many other higher-level languages and its object-oriented 
nature promoting good program structure. C++ was also the obvious choice given that 
it is the language used to implement Red Squirrel. As already mentioned Red Squirrel 
had been implemented for Windows and I saw no need to change that, though the 
project implementation has been kept as platform-independent as possible. 
 
2.3.4. Title 
 
The final decision to be made in preparation was that of a title for the project. In 
attempting to follow in a long line of bad puns for ARM projects, initially there was 
little inspiration. As the project progressed an apt working title sprang to mind and 
has stuck: ‘Tarmac’ – it’s very hard. 
 
2.4. The System Design 
 
The overall system design comprises of several independent systems, as shown on 
Figure 8. The system object model is introduced at this stage to provide an 
explanation as to how the different components of the system fit together; however, 
the operation of the complete system is complex and will only be understood once the 
individual components have been explained. 
 
The ARM interpreter communicates with the emulation of IOC and MEMC in order 
to drive the computer’s emulation. The dispatcher is able to invoke the interpreter, the 
profiler or native code as required. When the profiler is invoked, it reads from 
memory the relevant ARM instructions and generates a chunk of intermediate code. 
The chunk of intermediate code is then passed on to the optimiser and finally to the 
x86 generator which creates x86 machine code. The machine code is then stored in 
the code cache so that the dispatcher can invoke it. The ARM disassembler, Armlet 
disassembler and x86 disassembler are all debugging tools that interact closely with 
the system during development. 
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Figure 8 - System Object Model 
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Data Processing

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

cond
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Single Data Swap

Single Data Transfer
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3. Disassembler 
 
3.1. Purpose 
 
Although not contributing to the emulation, the ARM disassembler developed in the 
early stages was an essential tool used in creating the dynamic recompiler. 
Throughout the debugging of the rest of the project, various sequences of ARM 
instructions had to be examined in order to determine where the program was going 
wrong. Using an existing disassembler that takes a binary file and outputs the 
disassembled code in a text file was of no use since the facility for disassembled code 
to be displayed with other information from the emulator was needed. Creating an 
ARM disassembler specifically for the project was also a chance to investigate the 
problems of decoding ARM instructions before attempting the interpreter. 
 
3.2. ARM decoding 

See [41] for key 

Figure 9 - ARM instruction set encoding 

 
In emulators for older processors it is feasible to have a single look up table with the 
necessary number of entries (256 or 65536) to directly call a function to handle every 
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possible instruction encoding [42]. For a 32 bit processor like the ARM, with over 4 
billion encodings possible this is no longer possible so a more complex decision 
algorithm for decoding is needed. Fortunately, with relatively few operations on the 
ARM, much of the 32 bit instruction encoding is taken up encoding operand registers 
or immediate values (which limits the permutations of different instructions). 
 
The ARM instruction set, as shown in Figure 9, divides neatly into 11 different 
classes, largely distinguishable by the values in bits 24 to 27 of the instruction. It is on 
these bits that the disassembler performs initial decoding with further decisions being 
made as necessary specific to each case for the various other fields.  
 
3.3. Design 
  
As an example, take the case of a single data transfer instruction, such as: 
 

ldr r0,[r1,r2,lsl #2]!

 
When executed this takes the address from r2, logically shifts it left by 2 (effectively 
multiplying by 4), and that result added to r1 gives the address of the word to be 
loaded from memory into r0. The calculated address is then written back into r1. 
 
As already stated, the single data transfer class of instruction is identified by 
performing a ‘look up’ on bits 24-27 of the instruction. Parts of that range of bits, 
such as bit 25, denotes that the modifier to r1 is a register rather than an immediate 
value and bit 24 denotes pre-index i.e. that r2 lsl #2 should be added to r1 before 
the memory access. As a result these two variations are decoded for free by virtue of 
being included in the look up table on bits 24-27, hence 4 variations of single data 
transfer disassembly for pre/post index and immediate/register are implemented.  
 
Additional decoding then has to be used on bits 20,21,22 and 23 to decide whether the 
instruction is load or store, writeback or not, byte or word, increment or decrement 
respectively. The remainder of the instruction space is used to encode the registers 
involved, with r0 and r1 being encoded in bits 12-15 and 16-19 respectively. The 
logical shift left is denoted by bits 5 and 6, the use of r2 by bits 0-3 with the amount to 
shift by (i.e. 2) encoded in bits 7-11. Each of these separate sections affects the final 
string of text output by the disassembler. 
 
While apologies must be made for the rather dry explanation, the length of the 
description highlights the critical problem with emulating an ARM processor - the 
complexity of decoding. Performing this kind of decoding in a debugging tool such as 
the disassembler is not a problem, however attempting to perform this millions of 
times a second in an interpreting emulator is. 
 
3.3.1. Testing 
 
Being certain that the disassembler was accurate was of great importance, as bugs left 
undetected at this stage could compound the difficulty of debugging the rest of the 
project. In order to guard against this, large samples of disassembled text produced by 
disassembling real RISC OS programs, were systematically compared to the results 
from StrongEd [43]. StrongEd is a disassembler on the RISC OS platform and has 
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been thoroughly tested during use by hundreds of programmers, this makes it a good 
source for comparison to the disassembler in order to verify it. 
 
The use of the disassembler was so successful that the envisaged debugging graphical 
user interface (mentioned in the progress report) was unnecessary. In a previous 
emulation project [44], a debugging interface to execute single instructions one at a 
time was implemented; however, in this case, having a flexible disassembler proved 
sufficient. The disassembler was invaluable for testing all other parts of the project 
but particularly the interpreting emulator. 
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4. Interpreter 
 
4.1. Purpose 
 
The purpose of the ARM interpreter is to emulate any instructions that are not 
dynamically recompiled. It is also needed to provide a fully working model of the 
ARM processor to aid in the development of the dynamic recompiler.  
 
4.2. The problem with JIT 
 
In attempts to speed up Java Virtual Machines, just-in-time (JIT) compilers have often 
been employed. In a JIT JVM when a Java method is called for the first time it is 
recompiled into native code and stored to be used every subsequent time the method 
is called [45]. As a result of always executing recompiled code, a JIT JVM need have 
no interpreting emulator. 
 
The JIT JVM gets most of its performance boost from the second (and subsequent) 
times that a method is called, as the first time it is called, expensive recompilation has 
to take place. Indeed recompiling and executing a method once can take longer than 
simply interpreting it and as a result, overall speed is only improved if a method is 
called multiple times. The converse observation of the principle of locality is that an 
‘[emulated] program executes 90% of its code only 10% of the time’. Having to 
recompile this 90% of code that is only rarely reused can lead to an undesirable 
performance reduction in the JIT JVM. 
 
This problem is particularly true of program initialisation where most of the code 
executed will only be executed once while the program loads. Interpreting these 
sections of code can often give better performance than recompiling them. The lesson 
is that there is no point in recompiling code that is never going to be executed again.  
  
4.3. The HotSpotTM alternative 
 
Rather than recompile every method when it is called, Sun Microsystems’ HotSpotTM 
JVM is more sophisticated and only recompiles selected methods. The first few times 
a piece of code is executed, the Java bytecode is interpreted and some analysis is done 
on the code to identify performance ‘hot spots’. Performance ‘hot spots’ are sections 
of code that take a lot of processing time and would benefit from optimisation by 
recompiling to native code [46]. It is only these sections of code that are actually 
recompiled since other areas that are not executed enough to recoup the cost of 
recompilation, would slow the emulation. This demonstrates the necessity of an 
interpreting emulator as a critical part of a dynamic recompiler and is the approach 
taken in this project. 
 
To avoid confusion the reader should note that JIT is sometimes used to refer to any 
JVM which recompiles Java bytecode. In this report, the naming convention used by 
Sun Microsystems has been followed where a JIT JVM is one that recompiles every 
piece of code that is emulated (and therefore does not require an interpreting 
emulator).  
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4.4. Quantifying the JIT problem 
 
The difference between the JIT, HotSpot and interpreting emulators is best 
demonstrated in some quantifiable way. This can be done by calculating the relative 
total cost of emulating a chunk of code for each algorithm, using the following 
formulae. 
 
Interpreter   n ci  
JIT    cr + n cc 
Hotspot-style recompiler if n > t then t ci + cr + (n - t)cc 
    else  n ci 
 
Where: 

ci  – cost of a single interpreting emulation of the code. 
cr  – cost of recompiling the code. 
cc  – cost of calling the recompiled code. 
n  – number of times the code is to be emulated. 
t  – number of times the code is interpreted before being recompiled. 

 
Dividing these results by n, gives the ‘average cost per emulation’, i.e. the average 
amount of processor time used to emulate a chunk of code just once. By assigning 
typical costs to these values in the ratio 1 : 5 : 25 for cc : ci : cr with t as 1 (i.e. the 
hotspot-style algorithm interprets just once before recompiling) and varying the 
values of n used, the graph generated is as shown in Figure 10. 

 
Figure 10 - The relative average cost per emulation of different emulation methods 

From the graph it is clear that the JIT method is the cheapest approach for code that is 
executed many times (by a small margin). Unfortunately, this is coupled with an 
intolerable cost for code that is executed only once. Interpreting emulation, as 
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expected, has the same cost for each emulation no matter how many times emulated. 
The hotspot-style algorithm has the best of both methods, combining a progressively 
cheaper emulation for high values of n relative to interpreting, with a large cost saving 
over JIT for the smallest values of n. It is this property that makes it the best approach 
to emulation. 
 
4.5. Faster decoding 
 
Since the interpreter affects the overall performance of the emulation, great pains 
have been taken to make the interpreter as fast as possible. The problem of decoding 
ARM instructions quickly, forced the design of the interpreter to take a more 
aggressive approach than the disassembler. Rather than decoding on the obvious 
instruction bits of 24-27, which would lead to an extensive (and expensive) decoding 
tree, decoding is performed on the byte from bits 20-27. 
 
This leads to a 256-entry-table of the code to deal with all instructions and far more 
extensive specialisation (and therefore less decisions) for each entry. As a result, 
where in the disassembler a single entry covered the entire class of data processing 
instructions (logic and arithmetic operations), the interpreter table has 4 table entries 
just for variations of the add instruction that use immediate or register values and do 
or do not adjust the condition flags. The form of the resulting structure is shown in 
Figure 11. 
 

switch( getField(currentInstruction, 20, 27) )
{

. . .
// add rd, rn, rm
case 0x08:
. . .
// addS rd, rn, rm
case 0x09:
. . .
// add rd, rn, imm
case 0x28:
. . .
// addS rd, rn, imm
case 0x29:
. . .

}

Figure 11 - The format of the interpreter's instruction decode table showing add instructions 

 
This has the clear advantage of algorithmic efficiency by combining many decisions 
across the different classes of instruction into one fast look up. The disadvantage is 
that since there are large pieces of intricate code that may be identical or very similar, 
the complexity of the program increases dramatically leaving it more vulnerable than 
most to programmer error. To combat this, extensive templates are used throughout 
for common operations such as for getting the operands for data processing 
instructions. 
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4.6. Interfaces 
 
The ARM emulation cannot emulate a complete system on its own. In Red Squirrel it 
is linked to an emulation of the IOC (Input/Output Controller) which manages 
interrupts, and MEMC (Memory Controller) which is an interface between the ARM 
and the system memory. Both the IOC and MEMC chips were custom designed by 
Acorn Computers Ltd. for their RISC OS machines but almost all ARM-based 
systems have some equivalent interrupt controller and memory management unit. The 
functionality provided by these subsystems is so closely linked to the CPU that in 
some ARM processors (such as the ARM7500) they are actually on the same chip 
[47]. 
 
As a matter of good design and in order that the results of the project could be used 
with any ARM system emulator, great care was taken to ensure that no dependency 
on Red Squirrel was established unnecessarily. As a result, the interface between the 
interrupt and memory controllers is through an extra indirect interface used 
throughout the ARM interpreter. The ARM emulation accesses memory through this 
interface indicating a logical address. This is passed to the MEMC emulation, which 
accesses the appropriate page in memory and updates any memory-mapped systems 
without the ARM emulation knowing any details about MEMC, as shown in Figure 
12. The only other ARM to MMU action is where the ARM can set the ‘trans’ flag. 
The ‘trans’ flag is used for certain memory access instructions and forces the MMU to 
treat the memory access as if from a non-privileged mode irrespective of the current 
processor mode.  

Figure 12 - Example of the interface used to separate ARM and MEMC emulations 

 
Interrupts are likewise implemented transparently to the ARM emulation, with the 
ARM emulation signalling the IOC emulation at the start of each instruction’s 
execution and IOC returning information as to whether an interrupt has occurred. This 
leaves the CPU emulation unburdened with the complexities of calculations and 
timings for the IOC emulation, having just to handle the effects of an interrupt that the 
software expects. This divorcing of the emulation of external systems is a strength as 
the finished project can then be used for a completely different machine’s ARM 
emulation.  
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interface; used for floating point, signal processing and system control. While many 
types of coprocessor are relatively under-utilised on the ARM, the system control 
coprocessor is commonly included ‘on-chip’ for adjustments to the MMU and cache, 
and is emulated by Red Squirrel. The ARM interpreter uses Red Squirrel’s emulation 
for the system control coprocessor, though the interface is generic enough and limited 
in its impact on the interpreter to be adjusted for any other ARM system emulator or 
coprocessor type. 
 
The complete interface between the system emulation (at present, Red Squirrel) and 
the ARM emulation is summarised by the actions shown in Figure 13. 

Figure 13 – The interface between the ARM and system emulation 

 
The good design and minimal scope of these interfaces keeps the ARM emulation 
sufficiently distant from that of the rest of the system even for something like memory 
access which affects large parts of the ARM interpreter. 
 
Further interfaces to remove the way in which the emulated state is stored from the 
way in which it is implemented were used internally to the ARM emulation. This is 
often frowned upon in emulators, where the extra layer of indirection in function calls 
is costly (when executed millions of times a second). However, it is necessary so that 
the way emulated registers and flags are stored can be adjusted for the dynamic 
recompiler without repercussions for the interpreter.  
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In a real ARM processor, one instruction is being executed, the one after it is being 
decoded and the one after that is being fetched from memory at any one time. A 5-
stage pipeline was implemented after the ARM7, adding buffer and write-back stages, 
though this does not affect this project [48]. 
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As a consequence of the pipeline, the PC is always 2 or 3 instructions ahead of the 
current instruction being executed, depending on the circumstances. This means that 
in the rare event that an instruction changes the next instruction, the original version 
will already have been prefetched and will be executed unchanged (some games 
software is known to actually do this [49] ). The solution is to emulate the prefetch by 
always fetching the next instruction in the iteration of the loop before it is to be 
executed. On a branch or adjustment of the PC, the pipeline is flushed and the 
prefetched instruction invalidated causing the prefetched instruction to have to be 
reloaded. 
 
As described in the previous section, interrupts are triggered by ‘ticking’ the IOC 
clocks. The prefetched instruction value is then decoded and emulated and after the 
instruction is executed, any interrupts signalled by the IOC emulation are dealt with. 
The loop then returns to tick the IOC again, as shown in Figure 14. 

Figure 14 - The ARM interpreter loop 
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4.9. Debugging 
 
Bugs in the ARM interpreter are extremely difficult to identify. The main problem is 
that the effects of a slight anomaly in the emulation, such as incorrectly setting a 
single bit on a single iteration of a loop, may not become apparent until millions of 
emulated instructions later. This problem was appreciated well in advance and 
precautions were taken in comparing descriptions from several sources at every stage 
of the implementation. 
 
It is not feasible to exhaustively test every possible ARM instruction looking for 
problems. However, many of the earliest bugs identified were found by writing small 
test programs on an Acorn Risc PC, to test subsets of the instruction set. These 
programs are then loaded into a ‘dummy’ memory and emulated until a mov pc,r14 
instruction is reached (normally used to end a program). The results visible in the 
emulated registers are then compared to the results from the real hardware to find 
errors. 
 
Following the success of using test programs, a line by line inspection was made of 
the code, searching for problems, at each stage verifying operation with the manuals. 
Often the manuals are vague, conflicting or simply omit boundary cases leaving only 
experimentation with the real hardware and Red Squirrel’s existing interpreting 
emulator. For example, one source declares that for the mul instruction, “r15 [the PC] 
may be used as one or more of the operands” [51], while another states that doing so 
has, “unpredictable results” [52]. 
 
Other sources and emulators highlighted features of the ARM’s operation that were 
not at all obvious [53, 54]. A good example of this is where the instruction 
 

movs r0,#256

 
will clear the Carry flag for no obvious reason whereas in most cases the movs 
instruction only adjusts the Negative and Zero flags. Investigations showed that 
because of the way the immediate value 256 is encoded in the instruction, as 1 rotated 
right by 24 places, the value of the last bit to be rotated across the end of the register 
is 0 and the Carry flag is therefore set to 0. 
 
Having attempted to accurately translate every aspect of the ARM processor from the 
manuals to a fully working model and tested it thoroughly, the final test was to 
attempt to boot Acorn’s operating system, RISC OS. This is seen as an extremely 
intensive test of the compatibility and completeness of the emulator as the operating 
system performs a lengthy system test on start up and will refuse to boot at the 
slightest error. 
 
A copy of RISC OS v3.11 was extracted from an Acorn A5000 where it is stored on 
ROM and set up to be loaded into Red Squirrel’s emulated memory map. The loading 
code and dummy memory previously used for test programs were deactivated and the 
interfaces adjusted to access Red Squirrel’s IOC and MEMC emulation. Despite all 
the testing that had gone before, a different approach was required to get the ARM 
interpreter to a fully working state before moving on to the dynamic recompiler. 
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Miniscule errors either in the interpretation of the sources, or in the sources 
themselves initially prevented the ARM interpreter from running RISC OS. To locate 
these errors, a certain number of instructions (typically 50,000 at a time) were 
emulated on Red Squirrel’s interpreter, dumping the disassembled instruction and all 
register and flag values to a text file after every instruction. Performing the same test 
on my ARM interpreter and then running file comparisons on the two dumps was a 
good way to find the smallest discrepancy between the two interpreters. 
 
Even with such a mechanical bug detection system, the linear search for differences 
was still a slow one. It was found that in the event of a single bug, the execution of 
every successive instruction was affected. As a result a manual binary search could be 
performed across the execution space at intervals of several hundred thousand 
instruction emulations in order to find discrepancies. Once discrepancies were found, 
time-consuming investigation into the cause of the problem ensued, an example of 
such an investigation follows. 
 
The 6,531,120th instruction executed in loading RISC OS is teqp pc,#3. The 
instruction executed immediately after it is at a completely different address in 
memory (0x1C) and is b 0x381134C. The only difference between the two emulations 
is that after the first instruction, r14 in Red Squirrel’s interpreter had been 
incremented by 4 to 0x3811757, while r14 in my interpreter had been set to 0.  
 
The teqp instruction performs an exclusive-or on the two operands, in this case the 
PC and the value 3, updating the PSR with the result. As shown in Figure 7, this 
adjusts the processor mode flags, changing to supervisor mode. Immediately after that 
instruction an IRQ  (Interrupt Request) exception occurred, deducible from the PC 
changing to 0x1C (the IRQ vector 0x18 incremented by 4 because of pipelining 
effects).  
 
When an IRQ exception occurs, the ARM processor changes the register bank used 
for r13 and r14, copies the PC from r15 into r14 and jumps to the IRQ vector. From 
examining the emulation of the IRQ exception, it was found that incorrectly r14 was 
being updated with the value of r15 before the register bank changed, instead of 
afterwards (and therefore r14_irq was unmodified and held the value 0). 
 
While a complete understanding of the investigation may escape the reader, an 
appreciation of the difficulty of discovering the cause of the problem should not. 
Many such problems had to be tracked down, which took considerable time. Although 
most parts of Red Squirrel are deterministic, unfortunately the keyboard interrupts are 
asynchronous resulting in non-deterministic behaviour. This manifests itself by the 
ability to run the interpreter on the same test data twice and get different results, 
making automatic comparisons between the Red Squirrel interpreter and my own 
impossible. Fortunately, this did not affect RISC OS until the later stages of loading 
and slower manual examination of test dumps allowed sufficient testing. 
 
4.10. Compatibility 
 
The level of compatibility achieved by the ARM interpreter is extremely good. RISC 
OS boots completely to the desktop and is able to run high-level software, including 
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the very complex ARM BASIC interpreter. This is quite an achievement and allowed 
development of the dynamic recompiler to continue with confidence, having a 
working model of the complete ARM processor for comparison. 
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5. Recompilation 
 
5.1. Overview 
 
The recompilation system has a simple purpose: to generate native x86 machine code 
to emulate a given sequence of ARM instructions. This generation must be done 
quickly so that it does not slow down the emulation but should also make the 
generated machine code as fast as possible.  
  
An algorithm programmed for two different architectures could be implemented 
optimally for each processor. However, despite the algorithm being identical, the 
resulting machine code would have little in common. Ideally a dynamically 
recompiling emulator would be able to reverse engineer the machine code to the 
original algorithm and then optimally recompile it for the target processor. 
Unfortunately automatically inferring the high level semantics of an arbitrary piece of 
machine code is a difficult problem. Under the limited processing conditions of a 
dynamic recompiler, attempting to do so is simply not feasible. 
 
The alternative is to emulate the ARM instructions in the same way as the ARM 
interpreter does. This means generating native machine code that adjusts the registers 
and flags of the emulated ARM processor, in the same way as executing the 
instructions would on the real machine. In this way, we avoid the problems of trying 
to deduce the high level operation of a program. 
 
5.2. Methods of generating native code 
 
Direct Translation is the simplest approach of generating native machine code, where 
instructions are translated one by one. Once a source instruction has been identified, a 
predefined section of native code is generated for that instruction. The next instruction 
is then decoded and translated and appended to the machine code generated for the 
first. All this method does is to take pre-assembled ‘covers’ of target machine code 
and put them in the same order as their corresponding source instructions, as shown in 
Figure 15. This method removes the cost of fetching and decoding emulated 
instructions relative to an interpreting emulator though does little else. Although 
relatively straightforward to implement, this method is inflexible as it is unable to take 
account of instructions either side of the current one being translated and is therefore 
fairly crude in its optimisations. 

Figure 15 - Direct Translation of individual instructions 

Source instructions Target instructions
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Better forms of recompilation are performed on entire sequences of source 
instructions at once. In this way, optimisations over several instructions can be used to 
generate much faster code than is possible using direct translation. 
 
5.3. The use of intermediate code 
 
There are two main ways to perform optimising dynamic recompilation: with or 
without an intermediate code. An intermediate code is a third representation (other 
than source and target machine codes) of the instructions to be translated. The source 
code is converted into intermediate code and then the intermediate code translated 
into the target machine code, as shown in Figure 16. This method has been used in 
recompiling JVM’s [55] and other dynamic recompilers [56]. 

Figure 16 – Recompilation using an intermediate code 

 
Advantages: 
 

•  The native code generator can be changed to ‘retarget’ the dynamic recompiler 
so that it translates from ARM to a different target platform, without affecting 
the rest of the system. 

•  Recompiling ARM instructions that have many stages (such as Block Data 
Transfer) is complex and benefits from being decomposed to smaller simpler 
intermediate instructions. 

•  It is easier to debug than going direct from ARM to x86 as the intermediate 
code maps more closely to x86 than complex RISC instructions. 

•  It is easier and possibly faster to implement optimisations of the generated 
code on an intermediate code rather than only working with machine codes. 

 
 
Disadvantages: 

•  The recompilation is slower as a result of having to generate intermediate code 
as well as target code. 

Intermediate instructionsSource instructions

Target instructions
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The alternative to employing an intermediate code is to do a translation straight from 
source to target code but avoiding the problems of Direct Translation. Collateral 
information, such as whether the condition flags need adjusting, is collected by 
looking at the rest of the sequence pre-translation. The target code generator can then 
make decisions about what instruction to generate to best emulate parts of the 
sequence rather than just individual instructions, as shown in Figure 17. The main 
advantage of this method is that the target code generator has explicit knowledge of 
the source instructions it is representing. Unfortunately, the cost of repeatedly 
decoding instructions is high for a RISC architecture, making optimisations less 
practical. This approach is a good one when the source architecture is relatively 
simple, such as for 8 bit processors or java bytecode, where to attempt to decompose 
instructions any further is unnecessary. 

 
Figure 17 - Recompilation without an intermediate representation 

 
As a result of the inherent complexity possible with a single ARM instruction, 
decomposing to an intermediate code aids conversion to the relatively cumbersome 
target x86 instructions. Therefore, although both approaches have their merits, the 
intermediate representation is preferred for emulating the ARM architecture. 
 

collateral
information

Source instructions Target instructions  
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6. Armlets – An Intermediate Code 
 
6.1. Purpose 
 
The purpose of the intermediate code is to decompose ARM instructions into several 
sub-instructions that can be used to aid optimisation and x86 generation. So for 
example the ARM instruction: 
 

add r0,r1,r2,lsl #3

might be decomposed into sub-instructions that describe its operation, such as: 
 

t = r2 << 3
r0 = r1 + r2 + t

This could then be translated relatively easily into the x86 instructions (written with 
the latter register being the destination): 
 

movl r2,t
shll $3,t
movl r1,r0
addl r0,r2
addl r0,t

 
6.2. The ‘explicit-implicit problem’ 
 
With the previous example, it is straightforward to represent the internal operation of 
the ARM instruction in terms of the logical-shift-left and addition operators. 
Unfortunately, other ARM instructions have more complex side effects that to 
explicitly define in an intermediate code would be very lengthy. For example, at first 
appearance the ARM instruction 
 

adds r0,r0,r1 
 
 
seems more simple than the previous example. However, the ‘s’ appended to the add
mnemonic specifies that the instruction should update the condition flags with the 
result of the calculation. The operation would be explicitly defined in intermediate 
code as 
 

r0 = r0 + r1
N flag = r0 >> 31
Z flag = if (r0 == 0) then 1 else 0
C flag = CarryFrom(r0 + r1)
V flag = OverflowFrom(r0 + r1)

 
 
This would translate to a complex and lengthy stream of x86 instructions. However, 
both the ARM and x86 add instructions (like add instructions for many other 
architectures) set their condition flags in exactly the same way. If the x86 flags could 
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be made to represent the ARM condition flags, the entire ARM instruction can be 
translated to one x86 instruction: 

addl r1,r0

  
However, this one-to-one conversion would not be possible from such an explicit 
representation in the intermediate code and would require some kind of representation 
that was implicit of the instruction’s complexities. 
 
There are other ARM instructions that have such complex behaviour but 
unfortunately are not similar to any x86 instruction. For such instructions there is no 
option other than to explicitly define their operation in both the intermediate and x86 
code. 
 
This leads to what I term the ‘explicit-implicit problem’ – that in order to generate the 
best possible code, an intermediate code for a binary translator must be able to 
represent the both explicit behaviour of some instructions and the implicit behaviour 
of others. This can be more complex than the simple statement suggests. 
 
6.3. Options 
 
The designs of various existing intermediate codes were considered for the purposes 
of this project. The obvious intermediate codes to explore were those used in 
programming language compilers. These are typically used to describe mathematical 
expressions and data flow after parsing, to aid optimisation and code generation. 
Unfortunately, language compilers generate intermediate code to represent relatively 
high-level structures such as if-then-else and arithmetic operations without the 
complexities of emulated condition flags. 
 
The code of virtual machines such as Java bytecode and Pascal P-code were 
considered but dismissed as their stack-based design and lack of condition flags 
would hinder a useful representation of the ARM register-based system. Hardware 
description languages such as VHDL [57] were briefly considered; however, such 
languages are used to define processors and electronic components and as such are 
completely explicit. 
 
The approach of other dynamic recompilers that use an intermediate code [58] has 
been to use a stylised register transfer language and apparently waive any attempts at 
exploiting the similarities between processors. This is done in the hope of allowing 
complete retargetability by changing the source or target processor. 
 
The intermediate code developed for ARMphetamine [59] is a close match to the 
requirements of this project. This is to be expected given the similar theme of the 
projects. However, ARMphetamine’s intermediate code does not address many of the 
issues inherent with a real processor. As a result, exceptions, interrupts and the 
coprocessor, all fundamental for a real system emulation, are practically unsupported. 
 
Unfortunately because of the extremely specific requirements of the intermediate 
code, there are no designs that can be used directly. Instead I have designed my own 
intermediate code, influenced by the existing work.  
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6.4. Characteristics of Armlets 
 
In attempting to confer the reduced nature of the instructions relative to a full ARM 
instruction I have called the intermediate code armlets. One or more armlets describe 
completely the accurate emulation of a single ARM instruction. This section serves as 
an overview and introduction to armlets. A complete definition is provided in 
appendix B. 
 
Armlets are a form of ‘3-address code’ [60], as used in many programming language 
compilers. This means that for each armlet there is a single operation and three 
arguments, normally one destination and two operands. This is the same approach 
used in ARM instructions and armlets are written in the same format for simplicity:  
 

<operation> <destination>,<operand1>,<operand2> 
 
The 3-address code implementation is using quadruples [61], where the operands to 
be used for an operation refer to variables, as opposed to triples where the operand 
values are references to the intermediate code instruction that created them [62]. 
 
Unfortunately, the x86 is not as flexible as the ARM and must write the result of a 
calculation back over one of the source registers. Therefore, while an ARM 
instruction can execute 3-address statements of the form 

add x,y,z    meaning    x = y + z

leaving x and y unchanged. An x86 instruction is only capable of 
 

add y,x    meaning    x = x + y

This overwrites the original value of x with the result. As a result, at some stage in the 
recompilation all 3-address instructions have to be split into two or more 2-address 
instructions. In the early stages of designing the intermediate code, careful 
consideration was given as to whether this should occur during translation from ARM 
to armlets or armlets to x86. Most modern processors use 3-address instructions and 
so would suffer if the intermediate code used 2-address. Additionally most compiler 
intermediate codes used for optimisations act on 3-address instructions. As a result, 
the conversion to 2-address instructions is left to the x86 generator. 
 
As a reflection of the fact that an ARM instruction is ‘decomposed’ into a set of 
armlets, the operations that armlets perform are (mostly) constituent parts of their 
parent instruction and operations that are available on the x86. Standard logic and 
arithmetic operations such as eor, not, add and mul as well as shifting operations 
such as lsl, lsr, asr and ror, available on the ARM are all implemented. 
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Armlets operate on a set of variables, mostly representing the state of the emulated 
ARM processor, as listed below: 
 

r0 – r14 The ARM registers. 
pc  Program Counter. 
nflag  Negative flag. 
zflag  Zero flag. 
cflag  Carry flag. 
vflag  Overflow flag. 
iflag  Interrupt-request disable flag. 
fflag  Fast-interrupt-request disable flag. 
mode  Current processor mode. 
t0 – t29 Temporaries. 

 
The ARM condition flags can be adjusted explicitly by making one of the flag 
variables the destination for the result of an armlet. Additionally each armlet has a set 
of outflags associated with it that denote which of the condition flags it updates. The 
detail of exactly how the flags are updated is implicit in the armlet and is identical to 
the corresponding ARM instruction. In this way, the target code generator is able to 
implement the armlet in the best way possible for the target platform. Whether this is 
by making use of a near identical instruction on the target machine, or by explicitly 
calculating all the flags, is not a concern of the armlet generator. 
 
Each armlet also has a set of inflags associated with it that denotes which condition 
flags it makes use of in its operation. Like the outflags these are identical to the 
armlet’s corresponding ARM instruction by default. This allows the code generator to 
make decisions about which flags it needs to operate on. As a result, armlets are 
formally written as follows: 
 

[xxxx->xxxx] movc t0,0x1
[xxCx->NZCV] adc r1,r1,t0

 
which is equivalent to the ARM instruction: 
 

adcs r1,r1,#0x1

The first sequence of 4 characters in the square brackets are the inflags, so the adc 
armlet makes use of the cflag as input. The second sequence of 4 characters in the 
square brackets are the outflags, so the adcs armlet will adjust the nflag, zflag, 
cflag and vflag. The other feature to note is that the movc armlet operates 
completely independently of the flag variables, neither requiring them as input nor 
affecting them as output. All armlets can be specified like this in order to be used for 
armlet control flow, without affecting the emulated state. 
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Although armlets are primarily a 3-address structure, there are five main classes of 
armlet with different numbers of arguments, as follows: 
 

Implied – has no operands, e.g. settrans 
Transfer – a variable and 32 bit immediate, e.g. movc r0,#0x12345678

2-variable – two operand variables, e.g. cmp r0,r1 
3-variable – three operand variables, e.g. ror r0,r1,r2 
Immediate – just one 32 bit immediate operand, e.g. goto #0x87654321

 
In order to allow for easier optimisations and to keep the armlet encoding compact, all 
data processing armlets operate exclusively on armlet variables. In order for an 
immediate value to be used, it must be loaded into a variable using the movc (for 
move constant) armlet. 
 
6.5. The Program Counter 
 
In an interpreting emulator, one of the overheads of every instruction emulation is 
updating the PC to point to the next instruction. One of the benefits in recompiled 
code is that the PC does not need updating after every instruction (since the next 
instruction does not need fetching and decoding) and can just be set to the correct 
value before returning from the recompiled code. For this reason the pc armlet 
variable is unused most of the time and is only set to the correct value, calculated at 
compile-time, immediately before leaving the recompiled code. The point is that 
because of this, the pc variable will rarely contain the actual PC value. Instead, it is 
treated as a way of returning a value to the interpreter so that the interpreter knows 
which instruction to continue emulating at. 
 
As a result of the extreme orthogonality of the ARM, the program can treat the PC 
almost like any other register operand. These cases are the only other situation where 
the pc variable will be updated to contain the correct value. 
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7. Profiler 
 
7.1. Purpose 
 
The purpose of the profiler is to take a sequence of ARM instructions passed to it by 
the dispatcher and generate a sequence of armlets to represent them. This sequence of 
armlets is then passed on to the optimiser. 
 
7.2. Characteristics of a chunk 
 
How much code should be recompiled at any one time? It is obvious that if only one 
instruction is recompiled at a time, the system will has to keep returning to the 
dispatcher after every instruction emulation, a large and unnecessary overhead. The 
system therefore deals with sequences of source instructions, but what denotes where 
these sequences, known as ‘translation units’, start and end? 
 
In traditional compilers, one of the crucial quantities used for optimisation and code 
generation is the basic block. This is a sequence of consecutive instructions where 
execution starts with the first instruction and ends at the last, with no possibility of 
interruption or leaving part way through [63]. This characteristic makes them very 
useful for optimisation as they interact with the rest of the program in only a very 
simple way. Basic blocks were considered for use as the translation unit but they are 
typically quite short and would also mean returning to the dispatcher at the end of 
every iteration of a short loop. 
 
The translation unit decided on shares some of the properties of the basic block. I 
have called this a chunk, (in keeping with ARMphetamine [64] though the exact 
definition of that project’s chunk is different) to differentiate it from the basic block. 
A chunk has only one entry point at the first instruction, though it can have several 
exit points. Each instruction in the chunk is evaluated and identified as belonging to 
one of four categories according to its effect on control flow: 
 

•  Unaffecting – an instruction that has no effect on control flow. 
•  Branch-inside-chunk – a branch to an instruction that has already been 

identified as being in the chunk. 
•  Branch-outside-chunk – a branch outside the chunk. 
•  PC-adjusting – a non-branch instruction which affects the PC. 

 
Instructions in the first category are simply added to the chunk, moving on to the next 
instruction. A branch-inside-chunk instruction is handled internally to the chunk by 
generating a goto back to the appropriate armlet, which allows small loops to be 
handled within a single chunk. 
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A branch-outside-chunk is a branch instruction that points to a location either before 
the first instruction in the chunk or after the current one, as shown in Figure 18. 

Figure 18 - Deciding whether a branch is inside or outside the current chunk 

A branch-outside-chunk can have the interesting property of branching to an address 
that is already recompiled. It is possible to generate a native code branch to the start 
of this existing chunk so that execution of recompiled code can continue 
uninterrupted. However, complicated interdependencies between recompiled chunks 
would inevitably develop. This would mean that in the event that code was modified 
and a chunk had to be deleted, many other chunks would need either modifying or 
deleting also (so that they did not just branch into a void). In this way, a chain 
reaction across dependent chunks could end up affecting large sections of recompiled 
code. The approach taken is to drop back to the dispatcher, which then checks for an 
existing chunk to invoke. 
 
Adjustments to the PC value can be coped with in very different ways. Mapping the 
new arbitrary value of the PC to a possible chunk of recompiled code for that address, 
without leaving the current chunk is a significant problem. The approach taken is to 
drop back to the dispatcher so that it can handle it. It has been suggested that 
alternatively a hash table (from emulated PC to appropriate chunk) could be 
implemented in the recompiled code for all the values of the PC that occur [65]. This 
could then be updated post-recompilation when a new PC value occurs. However, as 
well as the complexities of the code involved, the cost-benefit of updating the hash 
table seems prohibitive and there are no known implementations of such a system. 
 
Unfortunately, since any forward branch ends the chunk, a relatively common ‘if-
then’ statement would also end the chunk. The reason is that if the condition is not 
satisfied then the execution has to jump (forward) to after the ‘then’ code to continue 
the program, as shown in Figure 19. On the ARM however this is not such a problem 
since conditional execution of several instructions in a row is often used to avoid the 
expense of a branch instruction. As a result, this case will not significantly harm the 
performance as might be expected. If emulating other systems without this benefit, 
some heuristic could be used to attempt to determine whether a piece of code fitted 
the style of an if-then statement. Features such as branching only a short distance 
might allow the forward branch to be included in the chunk. 

Branch-outside-chunk

Branch-inside-chunk

Current instruction

Branch-outside-chunk

Current chunkA sequence of
ARM instructions
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Figure 19 - The control flow of an if...then statement, showing forward branching 

 
It is worth emphasizing that unlike the basic block defined earlier which ends on a 
branch whether conditionally executed or not, the chunk does not. When a conditional 
branch-outside-chunk occurs, if the condition is satisfied and the branch is to be 
taken, only then does the chunk end. Unconditional branches-outside-chunk, as for 
basic blocks, still end the chunk of recompiled code. 
 
7.3. Chunk generation 
 
In the early stages of the design, a separate profiler and analyser were planned. The 
profiler would decide the start and end of the chunk and the analyser would then 
separately translate the specified ARM instructions to armlets. However, it was found 
that much of the work done in decoding ARM instructions for translation was 
duplicated in identifying the chunk. As a result, the instructions are translated during 
the process of identifying the chunk, in a single pass over the code. 
 
The dispatcher specifies the address of the first instruction to be recompiled and the 
profiler starts processing instructions from there. ARM instructions are dealt with one 
by one and decoded in a similar way to the disassembler, the interpreter’s more 
intensive decoding approach being unnecessary. Decisions about which armlets to 
generate for a particular instruction are performed in much the same structure as the 
disassembler, except generating armlets rather than strings of disassembled text. As 
they are emitted, the armlets are simply appended to a linked list. 
 
A hash table mapping from the address of each translated ARM instruction to the first 
armlet generated for that instruction is maintained. When translating any ARM 
instructions that branch backwards but within the chunk, the armlet that is the 
destination of the branch is located using this hash table. This destination armlet 
might normally be flagged and then patched up in a second pass over the generated 
armlets, so using this approach saves the expense of the extra pass. 
  
 
 
 
 

if
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Although a forward branch in an ARM instruction forces the chunk to end, forward-
branches in armlets can still occur. The ARM’s conditional execution of every 
instruction means that every instruction is wrapped in an implicit if-then statement, 
i.e. 
 

if(condition true)
{

execute ARM instruction
}

 
The consequence of the condition evaluating to false is that execution must jump 
(forward) over the armlets for this ARM instruction, introducing forward branches. 
This is a classic compiler problem and ordinarily would force a second pass over the 
generated armlets to ‘backpatch’ the forward-references once their destinations are 
known. For example, when generating the gotone armlet in the fragment below, the 
recompiler can not know the location of the subsequent mul armlet to which it needs 
to jump (as it has not been generated yet). This detail needs to be ‘filled in’ after the 
armlets for the ARM subeq instruction have been generated. 
 

Armlets      Generated from these ARM instructions 
 

0: movc t0,#2 add r0,r0,#2
1: add r0,r0,t0
2: gotone ? subeq r2,r2,r0
3: sub r2,r2,r0
4: mul r2,r3,r4 mul r2,r3,r4

 
The solution devised is that when a conditionally executed instruction occurs a 
reference is stored to the goto that needs to be updated. When all the armlets for that 
instruction have been generated, the goto is then ‘backpatched’ with the location of 
the next armlet to be generated. Since these forward branches cannot be nested, this is 
an efficient and effective way of avoiding a naïve and expensive second pass over the 
generated armlets. 
 
During the translation, trivial compile-time calculations are performed. For example, 
immediate values are expanded to their full 32-bit representation from the restricted 
encoding used in ARM instructions. Whenever the PC is used in an instruction the 
actual value of the PC is calculated based on the address of the instruction in memory 
and how it is accessed in the ARM instruction (which affects the pipelining influence 
on the value). The resulting value is then put into the pc armlet variable ready for 
use. 
 
Temporary variables are liberally allocated from t0 upwards as required and are often 
needed to hold an intermediate value in a calculation, for example the ARM 
instruction 
 

mla r0,r1,r2,r3 ; meaning r0 = (r1 * r2) + r3

 
is converted to 
 

mul t0,r1,r2
add r0,t0,r3
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Note the temporary variable highlighted in red. Alternatively, temporaries are used to 
hold constant values for use in other armlets (recall the restriction that armlets use 
variables almost exclusively, described in section 6.4). At the end of the ARM 
instruction, the temporary variables are automatically deallocated and will be reused 
for the next ARM instruction. 
 
Once an ARM instruction is translated, the routine that generated its armlets returns a 
value as to whether to keep recompiling or not. This is so that each ARM instruction’s 
armlet-generation routine can decide whether emulating that instruction necessitates 
ending the chunk. This might be because the armlets modify the PC, the ARM 
instruction is a branch, or some other instruction that prevents the chunk continuing. 
The overall recompiling routine then uses this decision to decide whether to continue 
the chunk. If the instruction is executed unconditionally and the armlet generation 
decides against continuing then the recompiler ends the chunk. If however the 
instruction is conditionally executed or the armlet generator decided in favour of 
continuing, recompilation continues with the next ARM instruction. This decision 
process is outlined in the flowchart shown on Figure 20. 

 
Figure 20 - Outline of the decision process concerning whether to end the current chunk 

 
7.4. Testing 
 
Verifying that the profiler generates the correct armlets is quite difficult. The first step 
was to develop an armlet disassembler so that the encoded armlets (which, for 
performance reasons, are not in a human-readable form) could be displayed in testing. 
The design of the armlet disassembler is similar to the ARM disassembler and the 
simpler format of armlets made it possible to debug this manually. Using the armlet 
disassembler, comparison between the ARM interpreter’s implementation and 
samples of generated armlets was possible to look for obvious problems. 
 
Probably the best way to debug the profiler would be to create an armlet interpreter 
that emulates armlets. Emulating the armlets using the armlet interpreter and 
comparing the results to those of the ARM interpreter would highlight any bugs in the 
generated armlets. Unfortunately, time constraints and the sheer scale of development 
needed to develop such a system prevented its implementation.  
 

Decode ARM
instruction

Select appropriate
armlet generator

Generate armlets
for this ARM
instruction

Did the armlet
generator decide to

continue chunk?

yes

no

Is the instruction
conditionally
executed?

yes
End chunk and

pass it on to
optimiser

no

start



 48

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13_usr
R14_usr
PC

R9_fiq
R10_fiq
R11_fiq
R12_fiq
R13_fiq

User Fast InterruptInterrupt Supervisor

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12

R0
R1
R2
R3
R4
R5
R6
R7

R13_irq R13_svc

R8_fiq

PC PC PC
R14_irq R14_svc R14_fiq

 

7.5. Unrecompilable code 
 
Although all ARM instructions can be converted to armlets and x86 code, there are 
several cases where it is not practical to continue to emulate in recompiled code and 
execution must return to the dispatcher and interpreter. In these cases, a leave armlet 
is executed and a reason code passed back to the dispatcher so that it knows the 
reason for leaving the chunk and can act appropriately. 
 
7.5.1. Processor mode change 
 
The changing of the current processor mode is one such reason for leaving the 
recompiled code. The ARM3 processor has 4 different modes of operation: user, fast 
interrupt, interrupt and supervisor. Each of these modes has its own register bank for 
r13 (the stack pointer) and r14 (the link register) so that a change of mode can happen 
without affecting normal program operation. Additionally Fast Interrupt mode also 
has r8 to r12 in its own bank in order to minimise the save and restore costs 
associated with this kind of interrupt [66]. Only one set of registers 0 to 15 is 
accessible to the program at one time, depending on which mode the processor is 
currently in. The banking system and all physical registers along with which modes 
they are available from are shown on Figure 21. 

Figure 21 - The ARM processor modes and their register banks. 

 
In the initial design, all the physical registers from all the different banks were to be 
valid armlet variables and therefore accessible to any armlet irrespective of the current 
processor mode. This would mean that a chunk would be ‘hardcoded’ to access the 
actual physical register for the processor mode that the emulated ARM was in at 
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compile-time. Unfortunately, there are sections of ARM code that can be executed in 
several processor modes. As a result the only way that registers could be ‘hardcoded’ 
as before was if a different section of recompiled code were compiled for every 
processor mode, and only the appropriate section for the current mode executed each 
time. Apart from taking four times the memory space and increasing the compile time 
for some sections of code, there is the pathological case that the mode could change 
inside the chunk causing this approach to break. 
 
One possible solution was to still allow access to all the physical registers as armlet 
variables but to have a ‘current register’ bank used for all normal operations. On a 
mode change, the values of the new mode’s registers are transferred to the current 
bank and then swapped back out when the mode changes again (as is done in the 
interpreter). However, the amount of code required to handle all possible mode 
changes, swapping up to seven registers, would result in enormous sections of code 
(as can be seen from the source code in method CArm::setProcessorMode()). 
 
The other possible solution was to have a level of indirection on every register access 
to point to the current register bank. This would result in the changing of the register 
bank being extremely fast (just changing the index for the indirection). Unfortunately, 
the added cost incurred by every single register access would significantly harm 
performance. 
 
The chosen method was to make all generated code mode-neutral so that it could 
execute no matter what the current processor mode was. This is done by having a 
current register bank and having to drop back to the dispatcher on a mode change so 
that it can swap different modes registers in and out of the current bank, leaving the 
recompiled code unencumbered with this. Although it seems a shame not to recompile 
the mode-switching code, the number of times that it is possible that a mode change 
could occur would drastically increase code size. 
 
Consideration was given to having a single ‘hand-coded’ subroutine to handle mode 
changes that could be called from within generated code whenever necessary, to avoid 
dropping back to the dispatcher. However, since mode changes largely occur on 
exceptions which cause a branch to another location (such as a handling vector) this 
leaves the chunk anyway. As a result, the overhead of dropping back to the dispatcher 
is inevitable and makes externally handling the mode change acceptable. 
 
7.5.2. Exceptions 
 
When an exception occurs in an ARM processor, the processor mode is changed, 
often to supervisor mode though alternatively to one of the interrupt-specific modes. 
The PC is adjusted to point to the exception’s vector address that normally contains a 
branch to the operating system’s routine to handle the exception. 
 
Either a processor mode change or a branch-outside-chunk is sufficient to cause 
execution to leave the recompiled chunk for the reasons already described. As a 
result, exceptions will cause a leave armlet to be generated and the emulation of the 
exception is then handled by the dispatcher. 
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7.5.3. Memory access 
 
Memory access is another part of the emulation that is not inlined into the generated 
code. The MMU emulation is quite lengthy and to handle this in inlined code would 
result in unacceptably long sections of generated code. Additionally if the ARM 
emulation is to be used for other ARM-based systems in the future, it makes no sense 
to inline MEMC emulation into the generated code. 
 
The alternative is to leave the MMU emulation external to the ARM emulation as is 
done with the ARM interpreter. Memory access is performed via one of several 
armlets to load or store a word or byte quantity. Before the memory is accessed, an 
address-exception-check is performed in the generated code. This verifies that the 
address is inside the 26-bit address space and if it is not, leaves the chunk with a 
reason code signalling that an address exception has occurred and needs to be 
emulated.  
 
Each memory-accessing armlet specifies a variable containing the logical address to 
be accessed, a variable for the data to be written to or read from memory and a 
temporary variable to receive a success flag. The success flag is a value returned from 
the MMU emulation denoting whether the memory access was a success. The checks 
for data abort exceptions (when an address attempts to access a non-existent page) are 
all handled by the MMU emulation. If the success flag denotes failure then the chunk 
leaves, signalling that a data abort exception has occurred and needs to be emulated 
by the dispatcher. If the success flag shows that the memory access was successful 
then the recompiled code continues unaffected. The armlets generated for the ARM 
instruction 
 

ldr r0,[r1,r2]

 
are as follows 
 

add t0,r1,r2 ; add r1, r2 to get address
movc t1,#0xfc000000 ; test address exception
and t2,t0,t1
movc t1,#0
cmp t2,t1
gotoeq addressOk ; if ok then skip leave
movc pc,<address+8> ; else leave code
interrupt check code ; check for interrupts
leave leaveAddressException

.addressOk
ldw r0,t0,t3 ; load word from memory
movc t4,#0 ; test data abort exception
cmp t3,t4
gotoeq noDataAbort ; if ok then skip leave
movc pc,<address+8> ; else leave code
interrupt check code ; check for interrupts
leave leaveDataAbortException

.noDataAbort

 
The complexity and variety of block data transfer instructions is an order of 
magnitude greater than for single data transfer instructions. Many ARM data manuals 
are vague about the consequences of an exception occurring part way through the 
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instruction execution and various other boundary cases. Breaking down the execution 
into several stages of individual memory accesses and exception checking is one of 
the strengths of the intermediate code approach. 
 
7.5.4. Interrupts 
 
The approach taken in the ARM interpreter of updating the IOC clocks and checking 
for interrupts before every instruction is overly expensive. Experiments with the ARM 
interpreter demonstrated that this was unnecessary and showed that intervals of tens 
of instructions caused no noticable difficulties, though this does vary according to the 
‘behind the scenes’ timing code in Red Squirrel. 
 
Although it is desirable for generated code to only check for interrupts every few 
instructions, it is important that code is not executed for long periods without 
performing this check. Indeed some sections of the RISC OS ‘Power On Self Test’ 
are known to infinitely cycle in small loops waiting for interrupts to occur in order to 
test the hardware’s timing. If interrupts were not checked within this loop, it is 
conceivable that the emulation could enter an infinite loop. The solution is for an 
intcheck armlet to be generated immediately before any leave armlet or branch-
inside-chunk, to prevent such infinite loops.  
 
The intcheck specifies the number of instructions that have just been emulated and a 
temporary variable for the result of the check. This armlet causes the IOC clock to be 
‘ticked’ the appropriate number of times for the number of instructions that have been 
emulated. If an interrupt is generated it is signalled in the result variable. The result 
variable is then examined by the generated code and if an interrupt has occurred, the 
chunk leaves, signalling the interrupt. An interrupt is just a special case of an 
exception and follows the same approach as other exceptions, dropping back to 
external code to handle it. The armlets generated to perform an interrupt check are as 
follows 

intcheck t0,#X ; update IOC to check interrupts
movc t1,#0 ; test success flag
cmp t0,t1
gotoeq noInterrupt
leave leaveIntCheck ; leave if interrupt occurred

.noInterrupt

 
7.5.5. Software Interrupts 
 
Software Interrupts, or SWIs, are a method for programs to call operating system 
routines. These routines can be anything from writing a character to the screen or 
resetting the computer to resizing a window or accessing a floppy disk drive. When 
executed, a SWI instruction causes a Software Interrupt exception to be thrown and 
execution jumps to the SWI vector. Control then goes to the Operating System’s SWI 
handler, which decodes the SWI and calls the appropriate routine for the command. 
The result of this is that an exception occurs (with the resulting mode change and 
branch-outside-chunk) which forces the chunk to leave. 
 
This approach allows the dispatcher to ‘properly’ emulate the exception, SWI handler 
and SWI code, or alternatively to jump to a routine that emulates just the high-level 
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behaviour of the SWI. In this way, the actions that the SWI instruction implies, such 
as opening a window, can be mapped to a completely different operating system’s 
equivalent code. This allows much software written on one operating system to run on 
another. This approach has been used successfully for the WINE [67] system to run 
Windows software on Unix and attempted by Riscose [68] to support RISC OS 
software on Unix. 
 
7.5.6. Coprocessors 
 
An ARM coprocessor emulation can range from the almost trivial cache control 
systems to full IEEE specifications of floating point mathematics. When an ARM 
coprocessor instruction is executed on the real hardware there are two possible 
scenarios. If the coprocessor is present the instruction is executed by the coprocessor 
and the ARM updated as necessary, otherwise an ‘undefined instruction exception’ is 
thrown which causes a jump to an operating system routine to handle it. Normally the 
OS routine emulates the coprocessor hardware, leaving the program containing the 
instruction unaware that the coprocessor does not actually exist (other than the 
instruction taking substantially longer to complete). 
 
The ARM interpreter was used to investigate the occurrence of coprocessor 
instructions in RISC OS. It was found that the system control coprocessor is of little 
consequence as it is used only seldom in the early stages of loading RISC OS. The 
other coprocessor, for floating point arithmetic, is used more frequently and has 
several instructions executed at regular intervals (every few thousand instructions) 
throughout RISC OS. Since the floating point coprocessor is regularly emulated in 
software on the real system, an undefined instruction exception occurs for each of 
these instructions. It is feasible that emulations for this and other unknown 
coprocessors will be implemented in the future and so some generic interface is 
required. By far the best way of handling this is again to leave the chunk with the 
leave armlet specifying a coprocessor instruction as the reason. In this way, external 
code can invoke a coprocessor emulation if it exists, or as normally occurs, generate 
the undefined instruction exception which necessitates leaving the chunk anyway. 
 
Although several cases have been described which force the chunk to leave, in 
practice these normally occur seldom enough to allow an adequate size of chunk. 
Generally the benefit of handling these situations like this is that the size of the code 
generated is minimised and the flexibility of the recompiler improved. 
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8. Code Optimisation 
 
8.1. The optimiser 
 
There are three stages to the dynamic recompilation. The initial stage is the 
conversion from ARM instruction to armlets, performed by the profiler. The final 
stage is the x86 generator where equivalent x86 code for the armlets is generated. 
There is another stage in between these two that has the sole purpose of optimising 
the armlets. This structure is summarised in Figure 22. 

Figure 22 - The three stages of dynamic recompilation 

 
Despite the initial appearance, code generation and optimisation are not completely 
disjoint and it is often more efficient to perform optimisations during code generation 
than separately. As a result both the profiler and the x86 generator implement 
appropriate optimisations. 
 
8.2. The nature of the source code 
 
Optimisations performed by a dynamic recompiler are generally very different to 
those performed in a traditional compiler. The main reason for this is the obvious 
difference in the source code being compiled. In a high level language, programs are 
rarely written with the underlying architecture in mind. For example, a calculation in 
a loop might repeatedly calculate the same value or an exponential function might be 
used where a simple multiplication will suffice. Traditional compilers are largely 
concerned with optimising these issues to improve the quality of the original program. 
 
However, in recompiling machine code, the program being recompiled has (one 
would hope) already been optimised by a compiler (or manually by an assembly 
programmer), removing all of these high level inefficiencies. If such optimisations 
were performed in the recompiler, the benefit gained by the small amount of code that 
was not previously optimised would be dwarfed by the cost of the recompilation for 
code that had been. Rather, the problem for a recompiler is that the original compiler 
is likely to have gone further than just improving the program’s algorithmic strengths 
and will have taken advantage of features of the source architecture which may be 
inefficient to perform directly on the target platform. An obvious example in the 
ARM to x86 case is the ARM’s conditional execution of every instruction, which the 
x86 does not support. 
 
This use of architecture features is even truer of the ARM platform than most. 
Uncharacteristically for a RISC processor, where the assembly language is often a 
maze of pipeline hazards [69], the orthogonal ARM assembly language is almost a joy 
to program in. This combined with a BASIC interpreter and assembler built into RISC 
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OS means that many programs for the platform are written in assembly language. This 
has been taken to unusual extremes with many complex GUI-based programs being 
written entirely in ARM assembly. On top of this, the recent market for ARM 
processors in embedded systems has encouraged the development of programs written 
in assembly in order to minimise the memory taken up by the program (and therefore 
the costs of the ROM to store it). As a result of the extensive use of assembly 
language, idioms of the architecture tend to be utilised more often than might be the 
case for a largely high level language platform. It is optimisations of these features 
that tend to be the concern of recompilers. 
 
8.3. The requirements of optimisation 
 
Since the recompilation affects the performance of the overall system, these 
optimisations must be performed as quickly as possible. This is in stark contrast to 
traditional programming language compilers, where the quality of the code generated 
is the overriding concern and an increased cost in compilation is acceptable for a gain 
in the quality of generated code. In dynamic recompilation, there is a trade-off 
between improving the quality of the generated code and keeping recompilation time 
as brief as possible, in order to get the best overall performance. 
 
As a result of the speed requirement of optimisations, any techniques that require 
much memory or complex data structures to represent them tend to be ruled out. The 
remaining optimisations tend to be what are known as ‘peephole’ optimisations [70]. 
These are techniques where only a short sequence of instructions is examined and 
replaced with a faster sequence where possible. 
 
The other major contrast to traditional compilers is that optimisations have to be 
performed only on local code. In a normal compiler, optimisations over large sections 
of the program are possible. However, in a dynamic recompiler, only the chunk being 
currently recompiled is optimised and no account is taken of other chunks. The reason 
for this is mainly speed, as scanning larger amounts of code takes longer. 
Additionally, as only one section of code is being recompiled at any one time the 
compilation of different chunks is inherently quite separate. 
 
8.4. Traditional compiler optimisations 
 
Many code optimisations in the compiler literature were investigated to try and 
identify any that might be used in the system. The following common techniques were 
rejected on the grounds that they are likely to have already been performed on the 
ARM code and so would have little benefit. 
 

Algebraic simplification  
For example, x=x*1 can be removed. [71] 

Strength reduction 
For example x=x*9 is equivalent to x=x+(x<<3), this optimisation is 
particularly common on the ARM with its barrelshifter which was 
originally significantly faster than the mul instruction. [72] 

Common subexpression elimination 
Reusing results from identical calculations rather than recalculating 
them. [73] 
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Induction variables 
Simplifying variables that vary by a constant amount in each loop 
iteration. [74] 

Loop unrolling 
Replace each iteration of a loop with inline code for that iteration. [75] 

Function inlining/Procedure integration 
Remove the overhead of a procedure call. [76] 

Trap elimination/Array bounds checking 
Remove unnecessary safety checks on array element access. [77] 

Straightening 
Join unconditionally sequential basic blocks into a single basic block to 
remove branch overheads. [78] 

 
There are several other traditional optimisations that initially seem relevant but have 
not been implemented for various reasons. One such case is that of machine idioms 
[79] which can be made use of to convert a fairly generic instruction or series of 
instructions into a single target instruction. For example with multiplication being 
relatively expensive, cheaper combinations of adds and shifts were regularly used on 
the ARM. For example, multiplying a register by 9 would be performed by the 
following ARM instruction 
 

add x,x,x,lsl #3 
 
Translated ‘as is’ this instruction would be relatively expensive on the x86 and should 
ideally be recompiled to a single x86 mul instruction. Unfortunately, checking for 
these special cases would slow down the generation of other more typical cases and so 
cannot be used. 

Figure 23 – Observed execution statistics for conditionally executed instructions. 
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Another similar case is the possible use of the conditional move instruction on the x86 
[80] to mimic the ARM’s conditional move instruction. These have not been utilised 
in the target code because as well as being detrimental to generating code for the more 
general case, it would harm other more powerful optimisations of conditional ARM 
instructions that have been employed (see section 8.6). 
 
Although the x86 platform does not support static branch prediction, other 
architectures such as SPARC-V9 and the RIOS version of POWER do [81]. The 
ARM interpreter was used to analyse the proportion of conditionally executed ARM 
instructions that are executed or not in RISC OS use. The findings, as shown on 
Figure 23, were that some condition codes have a clear trend as to whether they are 
executed or not. Therefore the recompiler may benefit from supporting static branch 
prediction code if targetting architectures that make use of it. However, since the x86 
would not benefit, the implementation of such a system at present would be likely to 
slow the recompilation. 
 
8.5. Java run-time optimisation techniques 
 
Java Virtual Machines that employ dynamic recompilation techniques also suffer the 
problem that optimisations must be as fast as possible.  Predictably, JVMs also use 
many traditional compiler techniques, such as constant folding [82] and common 
subexpression elimination [83], although generally avoid the more expensive 
optimisations. 
 
One optimisation that is very popular with JVMs is method inlining. The Java 
documentation [84] encourages the extensive use of accessor methods to object 
member variables (i.e. ‘get’ and ‘set’ methods), resulting in a large number of 
methods containing relatively little code. Java employs dynamic class loading and it is 
common for subclasses to be loaded, which may create an alternative version of a 
method [85] (for the subclass). As a result, methods cannot be inlined when the 
program is compiled to bytecode, causing inlining methods at run-time to 
significantly improve performance. Real machine code does not suffer such issues and 
many resulting dynamic JVM optimisations (such as dead code elimination [86]) are 
not relevant to dynamically recompiling real machine code. 
 
8.6. Conditional Blocks 
 
In attempts to avoid relatively expensive branches, it is common for several 
consecutive ARM instructions to be conditionally executed. So for example, the 
following C fragment 
 

if(x != 0)
{

primaryCounter++;
secondaryCounter+=2;

}

 
might compile to these ARM instructions 
 

cmp r0,#0
addne r1,r1,#1
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addne r2,r2,#2

 
Since the x86 processor does not support conditionally executed instructions to the 
extent that the ARM does, a conditional branch has to be inserted before each add 
armlet (shown in blue below) to check the condition and skip the instruction if it is not 
met. A naïve dynamic recompiler would then generate the following armlets 
 

[xxxx->xxxx] movc t0,#0
[xxxx->NZCV] cmp r0,t0
[xZxx->xxxx] gotoeq afterFirstAdd
[xxxx->xxxx] movc t0,#1
[xxxx->xxxx] add r1,r1,t0

.afterFirstAdd
[xZxx->xxxx] gotoeq afterSecondAdd
[xxxx->xxxx] movc t0,#2
[xxxx->xxxx] add r1,r1,t0

.afterSecondAdd

 
It should be obvious that checking the condition for every ARM instruction in the 
conditional block is unnecessary since the results of all subsequent condition checks 
will be the same as the first. This is provided the instructions in the block do not affect 
the condition flags, which in this and many cases they do not. As a result, a 
conditional block can be used so that the following armlets are generated where the 
condition is only checked at the start of the block 
 

[xxxx->xxxx] movc t0,#0
[xxxx->NZCV] cmp r0,t0
[xZxx->xxxx] gotoeq afterConditionalBlock
[xxxx->xxxx] movc t0,#1
[xxxx->xxxx] add r1,r1,t0
[xxxx->xxxx] movc t0,#2
[xxxx->xxxx] add r1,r1,t0

.afterConditionalBlock

 
This optimisation is performed by the profiler during the generation of armlets from 
ARM instructions. For each ARM instruction, the condition code is examined and if it 
is a different condition code to the previous instruction then a goto armlet with the 
inverse condition code is generated before the instruction’s armlets. The destination of 
that goto is not known at the time it is generated, so a reference to it is held for 
backpatching. All subsequent ARM instructions with the same condition code are 
then generated without the conditional check. When the condition code changes, the 
initial goto is backpatched to point to after the conditional block. Other circumstances 
such as an instruction that adjusts the condition flags, or a branch inside the chunk, 
also cause the conditional block to end and a new one to start with the an additional 
condition check necessary. Conditional branches inside the chunk have to be handled 
as a special case since they can be recompiled to a single conditional branch on the 
x86. 
 
One complication was that a later branch-inside-chunk could branch into the middle 
of a conditional block, avoiding the initial condition check. Only performing 
conditional blocks on basic blocks was considered but this would limit the benefits 
gained. Instead, details of the start and end of each conditional block are kept and any 
later branch-inside-chunk instructions that are generated are checked to see if their 
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destination falls inside a conditional block. If it does, then an additional condition 
check is inserted at the destination so that the emulation is correct. For example, the 
following sequence of ARM instructions (with the branch destinations shown by the 
arrows and the conditionally executed instructions in red) 
 

0x0: cmp r0,r1
0x4: addgt r2,r2,#0x1
0x8: addgt r3,r3,#0x2
0xc: addgt r4,r4,#0x4
0x10: sub r1,r1,#0x1
0x14: cmp r1,r2
0x18: bne 0x8

 
are translated into the following armlets, with the additional gotole armlet inserted 
inside the conditional block as a result of the later branch. 
 

0x0: [xxxx->NZCV] cmp r0,r1
0x1: [NZxV->xxxx] gotole 0x9
0x2: [xxxx->xxxx] movc t0,0x1
0x3: [xxxx->xxxx] add r2,r2,t0
0x4: [NZxV->xxxx] gotole 0x9
0x5: [xxxx->xxxx] movc t0,0x2
0x6: [xxxx->xxxx] add r3,r3,t0
0x7: [xxxx->xxxx] movc t0,0x4
0x8: [xxxx->xxxx] add r4,r4,t0
0x9: [xxxx->xxxx] movc t0,0x1
0xa: [xxxx->xxxx] sub r1,r1,t0
0xb: [xxxx->NZCV] cmp r1,r2
0xc: [xxxx->xxxx] intcheck t0,0x7
0xd: [xxxx->xxxx] movc t1,0x0
0xe: [xxxx->xxxx] cmp t0,t1
0xf: [xxxx->xxxx] gotoeq 0x12
0x10: [xxxx->xxxx] movc pc,0x10
0x11: [xxxx->xxxx] leave 0xb
0x12: [xxxx->xxxx] gotone 0x4

 
Notice how the ARM bne translates to a single conditional gotone armlet, not a 
conditional block. This optimisation is very effective as it is performed extremely 
cheaply in the same pass over the source code that is used to translate from ARM to 
armlets. The resulting code performs very well in handling a feature of the ARM 
architecture that could have become quite costly in translation to the x86.  
 
8.7. Redundant condition flag calculation elimination 
 
In emulating older processors, the fact that every logic and arithmetic instruction 
adjusts the condition flags meant that redundant calculations of condition flags are 
often performed, even when their results are not utilised [87]. In contrast to these 
older processors, the ARM’s instructions can either set the condition flags or not. As a 
result, less time is wasted on emulating redundant condition flag calculations than is 
the case for these older processors. However, despite this, it is still common for 
redundant condition flags to be calculated unless removed. 
 
This optimisation is applied by the optimiser to a chunk of armlets, after the 
translation from ARM instructions. It is only applied internally to basic blocks in 
order to keep the optimisation cost low. As a result, the leaders of the basic blocks 
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have to be identified by the optimiser, before attempting to remove redundant flags. 
Basic block identification is necessary for the code generation phase and so is not a 
significant cost increase. Once the leaders have been identified, the chunk is scanned 
from start to end, examining the inflags and outflags of each armlet. 
 
If an armlet adjusts a given condition flag, that flag is recorded as having been 
changed unnecessarily. If a subsequent armlet then requires that flag as input, the 
record of it having been changed unnecessarily is erased. If however, an armlet is 
encountered that adjusts that flag while it is still recorded as having been changed 
unnecessarily, it is the case that the previous flag adjustment is redundant. Since that 
first changing of the flag is never used before it is changed again, the outflag for that 
previous flag-changing instruction can be cleared, removing that flag from the 
calculation without affecting the emulation. 
 
For example, the following sequence of ARM instructions, that performs a 64 bit 
addition 
 

0x10: addS r0,r0,r2 ; add low half of value
0x14: adc r1,r1,r3 ; add high half of value
0x18: cmp r0,#0x5

 
is initially translated to the following sequence of armlets 
 

0x8: [xxxx->NZCV] add r0,r0,r2
0x9: [xxCx->xxxx] adc r1,r1,r3
0xa: [xxxx->xxxx] movc t0,0x5
0xb: [xxxx->NZCV] cmp r0,t0

 
However, of the four outflags from the add armlet, only the carry flag is used (by the 
adc armlet) before they are changed again by the cmp armlet. Therefore, the optimiser 
eliminates the redundant N, Z and V flags set by the add armlet, as shown in the 
following section: 
 

0x8: [xxxx->xxCx] add r0,r0,r2
0x9: [xxCx->xxxx] adc r1,r1,r3
0xa: [xxxx->xxxx] movc t0,0x5
0xb: [xxxx->NZCV] cmp r0,t0

 
Depending on the final implementation of the flag calculation in native code, the 
savings made by reducing the number of flags that have to be calculated can amount 
to a considerable saving. 
 
The x86 generator performs the remaining optimisations and it is most appropriate to 
describe them having examined its operation. 
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9. Native Code Generator 
 
9.1. Overview 
 
The purpose of the native code generator is to take a chunk of armlets and generate a 
chunk of x86 machine code that when executed emulates the actions of the armlets. In 
this respect, the native code generator has much in common with the backend of a 
compiler, converting its intermediate code to executable machine code. However, the 
native code generator is much more than a compiler backend as the armlets contain 
implicit information about condition flags. 
 
9.2. Instruction selection 
 
Appropriate x86 instructions are selected for each armlet. This can vary from a single 
x86 instruction to a long sequence depending on the armlet. In order to be able to 
generate any appropriate instructions with complete control, each armlet has a 
completely independent section of generating code to be tailored to its needs. 
 
Although initially it might seem fairly straightforward to select the x86 instructions 
for an armlet, variations of a single armlet can be fairly complex. Initially a look up 
table decodes the armlet, invoking the appropriate routine. The contents of this routine 
varies greatly from emitting a relatively fixed sequence of x86 instructions for 
inflexible armlets (e.g. the intcheck armlet) to a large decision tree for armlets that 
have various combinations of operands (e.g. logic and arithmetic armlets). The main 
reason for this is the limitations of the x86’s 2-address format instructions relative to 
armlets, as described in section 6.4. It was stated before that the conversion from 3 to 
2 address code would need to happen in the native code generator and it is during the 
instruction selection that this occurs. For example, there are many different 
permutations of x86 instructions for the add armlet, depending on its operands, as 
shown in Figure 24. 
  

Armlet x86 
op destination, operand1, operand2 op operand1, destination
add a,#,# movl #,a
add a,#,a addl #,a
add a,#,b movl b,a

addl #,a
add a,a,# addl #,a
add a,a,a addl a,a
add a,a,b addl b,a
add a,b,# movl b,a

addl #,a
add a,b,a addl b,a
add a,b,b movl b,a

addl b,a
add a,b,c movl a,b

addl a,c

 
Note, the labels, a,b and c denote different emulated 
registers and the # symbol denotes a known constant. 

Figure 24 - Permutations of the add armlet and appropriate x86 instructions 
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The decision tree breaks down into a series of comparisons and when a match is 
found the routine to generate the appropriate x86 instructions is called. Figure 25 
shows how matching based on initially the operation type, then the type of the 
operands for the add armlet, selects the appropriate code to be generated. The colours 
of the leaves of the decision tree group the code generation to show how similarities 
between the x86 instructions generated allows the same code generation to be used for 
certain permutations. This form of decision tree is used for many of the armlets, some 
such as sub are more complex than add because they are not commutative and so the 
generation routines selected are not duplicated as much. 
 

Figure 25 - Decision tree for x86 instruction selection 

 
It would have been possible to have more generic templates, so that they could be 
applied to more permutations: however, this would have resulted in poorer quality 
code and only negligible improvements in recompile time. It would also have been 
possible to have increasingly specialised templates in order to produce more CISC-
specific code for each case. For example, the x86 has an inc instruction which could 
have been generated in the case of an add r0,r0,#1  ARM instruction. However, this 
would have slowed down instruction selection for any add armlet with a constant 
operand. Additional research showed that inc and add both execute in 1 cycle on 
modern x86 processors which would mean no speed optimisation (although the 
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instruction encoding would take 1 byte not 3). Additionally the inc instruction does 
not adjust the carry flag like the add instruction does which would actually slow 
emulation significantly when flags had to be adjusted. 
 
9.3. Register allocation options 
 
There were three main approaches considered for how to allocate armlet variables to 
native registers in order to increase the code execution speed by reducing accesses to 
relatively slow memory. The first of these is to dynamically allocate registers so that 
at every stage of a chunk any variable can be allocated to any native register. This is 
the approach taken by traditional compilers in order to get close to the best possible 
register allocation. Unfortunately as a side effect of dynamic register allocation, it 
would become significantly harder for a chunk to be re-entrant if required (i.e. 
enterable at different armlets), without extensive details of the register allocation at 
every instruction boundary being stored. Dynamic register allocation results in the 
best quality code but at the expense of extra work during recompilation. 
 
Universal static register allocation was considered, whereby a few armlet variables are 
allocated to native registers for the duration of every chunk, with all other variables 
being stored in memory. In any traditional compiler this would be unthinkable; 
however, the savings in recompilation time for a dynamic recompiler are significant. 
Additionally when emulating architectures with few registers (e.g. older processors) 
on those that have many (e.g. modern RISC processors), it is possible to allocate all 
emulated registers to native registers making this the obvious choice. 

Figure 26 - Register usage in RISC OS 

 
Although the ARM has more registers than the x86, in the event that certain registers 
were accessed significantly more than others, universal static allocation might be 
practical. Using the ARM interpreter to record the number of times each register is 
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accessed in emulating RISC OS, the results (excluding r15, the program counter) 
shown in Figure 26 were observed. 
 
The most used registers are not surprising since the ARM Procedure Call Standard 
[88] (the convention for calling subroutines) defines specific uses for some of the 
registers, such as: 
 

r14  - the link address register (for holding return addresses). 
r0, r1 - scratch registers for subroutines. 
r13  - lower end of current stack frame. 
r10  - stack limit 

 
This causes these registers to be used more often than others. Unfortunately to utilise 
universal static register allocation; the graph would have to be more sigmoid-shaped, 
with only a small number of registers being used significantly more than others. This 
is unlikely to occur for a processor with so many general-purpose registers. 
 
The third option is to statically allocate registers within each chunk. This would 
require a pre-scan of the chunk before compilation, with the number of times each 
variable is used being recorded. The most used variables can then be statically 
allocated for the duration of the chunk. In this way each chunk would have its most 
used variables allocated to native registers throughout. Unfortunately this is likely to 
suffer the same problem as universal static allocation as some chunks would have no 
variables that are used a lot more than others, while also incurring extra costs in the 
recompilation from analysing the variable usage. When there are a relatively large 
number of general-purpose variables to be allocated static register allocation has a 
number of weaknesses so dynamic register allocation is used. 
 
9.4. Dynamic register allocation 
 
A dynamic register allocator allocates variables to registers until all the registers are 
allocated. When another variable needs to be allocated to a register, the problem is in 
deciding which variable should be displaced to memory. The aim is to choose the 
variable to be ‘spilled’ to memory to minimise the number of memory accesses. 
Perfect register allocation is an NP-complete problem [89] and so traditional 
compilers use heuristic algorithms to give approximate results. Unfortunately, these 
graph-colouring techniques [90] are still too expensive for use in a dynamic 
recompiler. 
 
Consideration was given to naïve allocation algorithms that are very fast, keeping 
compilation time down. Choosing a variable to be spilled at random, although 
inevitably resulting in some very poor decisions, would be very fast to compile. Using 
a first-in-first-out approach to spilling would take slightly longer than a random 
decision during recompilation but seems less likely to make very poor decisions. 
Making a decision to spill certain variables based on the observed register usage in 
Figure 26 would be sensible. Given the choice between spilling r14 and r9 the register 
allocator might be predisposed to spill the least used. However, this might result in 
r14 being permanently allocated to a register, which may be undesirable. A least-
recently-used algorithm, as implemented in processor caches, might have more 
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relevance to which register is likely to be used next, though still does no attempt to 
investigate future usage. 
 
There are more complex techniques which attempt to give good approximations to the 
results possible through graph colouring. This is done using local (rather than global) 
register allocation based on the live ranges of variables (i.e. what parts of the code a 
variable is used in). Algorithms such as second-chance binpacking [91] and linear 
scan [92] are two such algorithms. These methods although promising for JVMs, are 
still relatively slow for use in a complete system emulator and so a different method 
has been implemented that is limited in its analysis (and so relatively fast) but makes 
fairly sensible decisions. 
 
Operating only within basic blocks, the register allocation algorithm allocates a 
variable to the first register it finds that is not allocated. If all the registers are 
allocated, a simple lookahead system is used to assign a score to each x86 register. All 
the x86 registers are initially allocated scores of 0. If the variable held in a register is 
used in the next armlet the score is incremented by 2. If the variable held in a register 
is also used in the armlet after that the score is incremented by 1. Variables that are 
the destination of one of these two armlets get their score incremented again. The 
algorithm then scans through the x86 registers looking for a register with a score of 0 
(i.e. a variable not used in either of the next two armlets), then 1, then 2 etc. In this 
way, the register chosen to be spilled is unlikely to be used in both the successive 
armlets and is certain to not be the destination of one of the next two armlets. This is 
done since the destination value for an armlet is likely to be used again soon. For 
example, the following section of armlets shows the scores associated with a subset of 
the armlet variables when evaluating each armlet. 
 

sub r2,r2,r1 r0=5 r1=3 r2=1 t0=0
mov r1,r0 r0=5 r1=0 r2=2 t0=2
add r0,r0,r2 r0=2 r1=0 r2=0 t0=4
movc t0,#5 r0=3 r1=0 r2=0 t0=2
cmp r0,t0 r0=0 r1=0 r2=0 t0=0

With a register-starved architecture such as the x86, which has just 6 registers able to 
be used for storing armlet variables, frequent register spilling is almost inevitable and 
this algorithm makes a good attempt at minimising spillage in the short term. 
 
9.5. Condition flag calculations 
 
The x86 processor has condition flags which are adjusted in very similar ways to the 
ARM condition flags that need to be emulated. In fact the ARM’s negative, zero, 
carry and overflow flags map onto the x86’s sign, zero, carry and overflow flags as 
shown in Figure 27 in their positions in the respective flags registers. 
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Figure 27 - The ARM and x86 flag similarities 

 
By mapping the emulated flags onto the x86 flags, the complex explicit calculations 
highlighted in section 6.2 can be avoided for many armlets. The recompiler keeps 
track of where each of the emulated flags is currently being stored, either in memory 
or in the appropriate native flag. Inside each armlet’s code generating routine the 
outflags are compared to the native flags that the x86 instructions will affect and any 
that should not be adjusted are spilled to the register file held in memory. Likewise, 
any inflags that are required can be put into the appropriate native flag if the x86 
instructions are able to make use of it, or be held in memory or a register if it needs to 
be explicitly calculated. For example, the gotone armlet is recompiled to a jnz x86 
instruction that requires the emulated zero flag to be the same as the native zero flag 
in order to work correctly. 
 
Unfortunately, the x86 flags cannot be accessed as easily as the condition flags can be 
on the ARM. In order to get the values of the condition flags into the register file, the 
following sequence of instructions are required 
 

sets 0x3d(%ebp)
setz 0x3e(%ebp)
setc 0x3f(%ebp)
seto 0x40(%ebp)

 
each of which sets or clears the appropriate byte in the register file (a memory block 
pointed to by the EBP register) according to the value of its condition flag. 
 
Although the way that similar instructions adjust the condition flags is identical for 
many instructions, the subtract operations on the two processors set the flags in the 
opposite way. On the ARM the carry flag’s effect on an SBC instruction is 
  

destination = operand1 – operand2 – (1 – carry)

 
while on the the x86, for the equivalent SBB instruction it is  
 

destination = destination – operand – carry
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This is solved fairly simply by inserting a CMC instruction in generated code before 
and after every subtract instruction, which inverts the carry flag. This is so that except 
for temporarily during the subtract instruction, the carry flag contains the value it 
would on an ARM.  
 
9.6. Control Flow 
 
The machine code generated rarely executes in a straight line despite the restrictions 
of the chunk definition. References are kept in a hash table for each armlet generated, 
mapping it to the first x86 instruction generated for it. Whenever a backwards-
referencing goto armlet occurs, the address of the x86 code generated for the goto 
destination’s armlet is looked up in the hash table, as shown in Figure 28. In this way 
the goto can be translated directly to the appropriate jump instruction, without 
needing a second pass over the code. 
 

Figure 28 - Identifying the x86 address of a given armlet to avoid backpatching 

 
Forward-referencing goto armlets have a record added to a linked list holding a 
reference to them and details of their destination. When recompilation of the chunk is 
complete, each entry in the linked list is is backpatched with the correct destination 
address using the same hash table as for a backward-referencing goto. In handling 
gotos in this way there is no need for any second pass over the code to backpatch 
unknown values, making the recompilation more efficient. 
 
There are further complications caused by changes in the control flow. Using dynamic 
register allocation means that the variables allocated to registers before a goto are 
unlikely to be the same as the variables allocated to registers at the destination of the 
goto. The solution to this is that whenever a forward-referencing goto occurs in a 
chunk, a copy of the details of the current register allocation is linked to the 
destination armlet of the goto (which will be by definition the leader of a basic 
block). When each armlet that is a leader of a basic block is about to be recompiled, 
the recompiler checks for an existing register allocation (from a previous forward-
referencing goto) and if found, uses this register allocation, otherwise it continues 
with the previous armlet’s allocation. Changing the register allocation requires that 
the old and new allocations are reconciled by spilling and then loading from memory 
the variables that change location between the two allocation descriptions. The 
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condition flags are included in this comparison and may also need to be spilled to 
memory. 
 
The other occasion when the control flow is changed is when an armlet occurs that is 
handled externally to the recompiled code. For example, the intcheck armlet requires 
an external call to the IOC emulation, performed by calling a C function from the 
generated code, using the following x86 instructions 
 

movl $0x402b30,%edx ; put function address in EDX
call *%edx ; call function at address in EDX

 
Any arguments that need to be passed to the C function (such as the number of ARM 
instructions emulated) and any results that need to be returned (such as whether an 
interrupt occurred) are stored in the register file in special locations, as the register file 
is accessible from both the C function and the generated code. In this way, generating 
the full code to handle function parameters, compatible with the code generated by the 
C compiler, is avoided. Fortunately the register allocation is not affected by this 
function call, and upon returning from the function, emulation continues unaffected. 
The chunk ends when a leave armlet is executed and this causes all register and flags 
allocated to the native facilities to be spilled back to the memory bank for returning to 
the main program. 
 
9.7. Constants 
 
The final optimisations, alluded to in section 8.7, involve the handling of constants in 
the x86 code generator. It is faster to evaluate a calculation only once at compile time, 
so that just the result is used at run time. This can be done if the result of the 
calculation is constant. This optimisation is known as constant expression evaluation 
or constant folding [93]. The other related optimisation is known as constant 
propagation [94] which is when a constant is assigned to a variable and then from 
there until the variable is changed again, all occurrences of that variable are replaced 
with that constant. A combination of these techniques is employed in the code 
generator within each basic block. 
 
The movc armlet highlights all constants in the chunk. When a movc armlet is 
identified during recompilation, the variable and its associated constant value are 
added to a ‘constant pool’, replacing any previous entries for that variable. Any later 
assignments to that variable then invalidate its entry in the constant pool. When 
generating subsequent armlets, the instruction selection has a special case for when all 
the operand variables are in the constant pool, as shown for the add armlet on Figure 
25. When this occurs, the recompiler performs the calculation and the destination 
variable of the armlet is added to the constant pool with its newly associated value. In 
this way, no code need be generated for constant expressions and the constant values 
propagate throughout the basic block. For example, the following sequence of ARM 
instructions: 
 

mov r1,#2
add r0,r1,#123
sub r1,r0,#1

 
is translated by the profiler to this chunk of armlets: 
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movc r1,#2
movc t0,#123
add r0,r1,t0
movc t0,#1
sub r1,r0,t0

 
The relationship between these armlets is shown in Figure 29. As you can see the 
value of the expression is evaluated to 124 and no code need be generated at all. 

Figure 29 - The relationship between armlets in constant evaluation 

 
In order to keep constant evaluation fast and simple, this optimisation is only 
performed within basic blocks. However, at the stage where the end of a basic block 
is identified by the code generator, it is too late to backtrack and insert code that 
actually put the constants into their variables. The solution is to effectively spill the 
constant pool to the code at the end of the basic block. Constant spilling is performed 
by generated code that moves constants into the appropriate armlet variables, whether 
they are held in native registers or memory. The other interesting scenario is where 
armlets that evaluate to a constant expression additionally adjust the flags. The 
solution is that code may be generated to adjust the flags but not actually calculate the 
result of the calculation, which is in the constant pool. 
 
Ordinarily all possible constant evaluation will be performed when the program was 
originally written, however there are some interesting features of the ARM that 
prevent this from being the case. The problems of immediate value encoding on the 
ARM were mentioned in section 4.9. As a result of the limited number of bits in a 
fixed-length 32 bit instruction, immediates are encoded as a 4 bit rotate value and an 8 
bit immediate, the actual value used being calculated by the following equation 
 

result = immediate ROR (rotate value * 2)
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This allows most of the commonly used values over a wide range to be encoded as 
immediates. However, some values, for example 0x12345678, cannot be encoded in 
this way and must either be loaded from memory or be formed from a sequence of 
ARM instructions as follows 
 

mov r0,#0x12000000
orr r0,r0,#0x340000
orr r0,r0,#0x5600
orr r0,r0,#0x78

 
This entire sequence has no code generated for it at all by the recompiler as the 
constants are handled in the constant pool. 
 
Another case generating a need for constant evaluation occurs as a result of the 
visibility of the PC. This was commonly used to perform PC-relative addressing to 
access values in a specific memory location. For example, the ARM instruction 
 

ldr r0,[pc,#32]

 
loads the word from memory at address pc+32 into r0. Since the PC can be 
determined at compile-time, the offset calculation can be too (when it is an immediate 
rather than a register) resulting in further savings. It is unclear whether constant 
evaluation and propagation would have such a significant impact when dynamically 
recompiling from other architectures, though it is certainly very useful for the ARM.  
 
9.8. Emitting machine code 
 
Emitting raw machine code quickly and in a programmer-friendly way is not simple. 
The fastest ways of generating machine code involve sprinkling the code generator 
with hexadecimal values of machine code, or at best C macros that evaluate to 
hexadecimal values, leaving the program code practically illegible and very hard to 
debug. The alternative of using a traditional assembler, parsing strings of assembly 
language, although very easy to read is unfortunately far too slow for a dynamic 
recompiler. There are third-party systems such as GNU Lightning [95] and the New 
Jersey Machine-Code Toolkit [96] that claim to generate machine code. However, in 
the time available, rather than learning a relatively complex system, something 
simpler was required. 
 
Even once the complex decisions have been made about what code is to be generated, 
creating the software to emit machine code is laborious and time-consuming. Rather 
than implementing the machine code emitter myself and re-inventing the wheel, I 
have, with permission, used the run-time assembler from Julian Brown’s 
ARMphetamine. This is a list of macros that define the encoding of around 300 
different x86 instructions. So for example, the x86 instruction 
 

cmp $0x1,%edx

 
has its encoding defined by the C macro 
 

#define CMPlri 8,0x81,3,rm,3,0x7,2,0x3,32,imm
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The macro name, CMPlri denotes that the macro is a CMP instruction that operates on 
longs (32 bit values), and takes a register and an immediate as operands. The 
subsequent numbers are pairs, the first being the number of bits and the second being 
the value to put into those bits, with rm and imm being variables for the register and 
immediate values that are specified by the code generation. Macros such as these, 
with their associated variables defined are then passed to an assemble() method that 
takes a variable number of arguments (in the same way as the C function printf()). 
This method then generates the correct values as defined by the macro into a stream 
of bits to make up the x86 code chunk. 
 
9.9. Invoking native code 
 
In order to invoke the generated machine code, the C++ program has to be able to call 
that code and then have it return back to the C++ program. This is made more 
complex by the fact that any registers used in the C++ program must be restored by 
the recompiled code before returning so as to not corrupt the program. Rather than 
write assembly code to manipulate the registers, it is better to make the C++ program 
treat the recompiled code as a C function. This is done by creating a type definition 
for a function, then casting the block of machine code to a function and finally calling 
that function in the same way as any other, as shown in the following code. 
  

typedef uint32 (*codeInvoker)(Context* aContext);
codeInvoker callNativeCode = (codeInvoker)nativeChunk->area;
uint32 returnVal = callNativeCode(context);

 
A Context structure containing the emulated registers as held in memory is passed to 
the native code and the value in the EAX register, containing the reason code from the 
leave armlet, is returned when the chunk ends. 
 
9.10. Debugging 
 
Finding problems in the generated code is a slow and arduous process. An external 
x86 disassembler [97] is invoked by the program, which disassembles native code 
chunks directly and dumps the results to a text file. Actually studying the generated 
code looking for problems is extremely hard since the implicit workings of the 
condition flags are very difficult to follow. All that can be practically done is to take 
small sections of ARM code, emulate them on the interpreter then recompile them and 
search for any differences between the emulation by the interpreter and the generated 
code. 
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10. Conclusion 
 
10.1. Evaluation 
 
10.1.1. ARM Interpreter 
 
The ARM interpreter has been very successful and has achieved a near-perfect 
emulation of an ARM3 processor. There are still a few small glitches in the emulation 
that cause occasional high level issues. However, all of the measures of compatibility 
that were laid down at the outset have been achieved. The following screenshots show 
various examples of the ARM interpreter in action. 

 
Figure 30 - The RISC OS initialising screen  

Figure 31 - Screenshot of the !Draw program, written in C, that comes with RISC OS  
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Figure 32- Screenshot showing the RISC OS task manager and about box 

Figure 33 - Screenshot showing the command line running ARM BASIC, written in ARM assembly 

 
10.1.2. Profiler 
 
The profiler is able to translate any sequence of ARM instructions into chunks of 
armlets as required. Even sections of code that deal with the trickier side of the ARM 
architecture such as coprocessors, SWIs and interrupts are all represented in the 
armlet instruction set. The conditional block optimisation that is performed during 
armlet generation is one of the strengths of the project and reduces one of the 
significant overheads in generated x86 code. The other strength of the profiler is in 
managing to translate ARM instructions to armlets using only a single pass over the 
code. This was something that was not originally thought feasible, hence the separate 
profiler and ARM analyser described in the progress report. 
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10.1.3. Optimiser 
 
Optimising out any redundant flag calculations is a fast way to remove large amounts 
of wasted calculation from an explicitly calculating emulator. Although this technique 
has been employed successfully in the past with threaded interpreters [98] the benefits 
that it has for code that makes use of native flag calculation requires further 
investigation. The basic block identification performed by the optimiser is used both 
in the redundant flag elimination and in the code generation and is able to be 
identified quickly and easily and the data reused thanks to the internal representation 
used for armlets. 
 
10.1.4. Native Code Generator 
 
The native code generation performs complex tasks such as managing dynamic 
register allocation very well. Instruction selection is fast and flexible so that it can be 
manipulated to generate specific code for any variety of armlet. As a result, a single 
RISC ARM instruction is occasionally able to be translated to a single CISC x86 
instruction. The techniques used are designed to be fairly generic and most deal 
largely with armlets. This means that were the system to be retargeted to another 
architecture most of the framework of even the code generator could be reused. 
 
In the same way as the conditional block optimisation, the constant folding and 
propagation are very successful at eliminating some of the obscure traits of the ARM 
processor that would not normally recompile at all well to the x86. Examples of all 
the different classes of armlet are supported by the generator, including those that are 
performed by calls back to C functions. However, there are still several armlet code 
generation routines that need to be implemented. The dynamic register allocation 
sometimes makes bad decisions about when to spill temporary values to memory, 
only for them never to be used again. Currently all armlet variables are treated in the 
same way by the register allocator. However, it seems that temporaries should be 
handled differently, possibly with the profiler explicitly stating when the value a 
temporary is holding is dead. 
 
10.1.5. Debugging tools 
 
Developing tools to debug the actual system was a significant part of this project. The 
ARM disassembler worked very well and was able to be easily used in many parts of 
the system. It alone is a fairly complex program and is very competent at 
disassembling ARM code. The disassembler is fully functional with the only 
limitation being that coprocessor instruction disassembly was not implemented in the 
need to move on to developing the interpreter. This was not a problem as coprocessor 
instructions are used relatively infrequently and are handled externally to the ARM 
emulator. 
 
A lot of effort went in to dynamic profiling of the ARM instructions being executed in 
RISC OS. Details about the use of exceptions, coprocessor instructions, SWIs, 
condition codes and register usage were invaluable in making implementation 
decisions. The significance of this information was relatively understated until 
publicly discussing such results lead to third parties requesting additional profiling for 
information to be used in their own ARM-based projects. 
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The armlet disassembler was used in a similar way to the ARM disassembler and was 
extremely important for comprehending the armlets that were generated. Despite 
having already implemented two disassemblers, the decision to use an external 
disassembler for x86 code due to the variety of the x86 instruction set was a wise one. 
 
10.1.6. Design 
 
The design of the system has been very successful and has banished any concerns I 
had about the lengthy reading period prior to starting the ‘real work’. Despite initial 
doubts over whether to use an intermediate code at all, I do not believe it would be 
feasible to develop an optimising dynamic recompiler for an architecture of the 
ARM’s complexity without it. The intermediate code has allowed testing throughout 
the translation process, breaking down the problem into manageable sections and will 
ultimately allow for around 90% of the code, including all optimising routines, to be 
reused unchanged if the system is retargeted. 
 
The decision to use an existing system emulator, Red Squirrel, was a very good one. It 
allowed concentration purely on the CPU emulation and provided a strong test bed 
able to support a full operating system for testing, also providing the best 
demonstration of the system working to support a full microprocessor emulation. 
 
10.1.7. Software engineering 
 
The object-oriented nature of C++ made it easy to remain strictly disciplined in 
keeping the system modular and the different sections completely separate. 
Additionally the low level nature of C++ made the implementation of complex 
sections of ‘bit-bashing’ code relatively simple. With around 13000 lines of C++ 
written, using the Microsoft Visual C++ Development Environment made moving 
around the code during development easy as well as providing a good debugging 
environment that could interrupt program execution and inspect variables. This made 
the difficult problem of debugging the program slightly less painful than it might have 
been. 
 
The waterfall model of system development, proved a good approach both to the 
overall project and to the implementation phase. Starting at the beginning of the 
system and developing through to the end, returning to previous stages as required 
was ideal for this one-man project where the different components were very separate 
systems in their own right. 
 
The time available was managed well despite underestimating the difficulty of the 
project and the intrinsic complexity of practically every line of code. A detailed 
development diary was kept and is included with the source code for indepth 
information about how the project progressed. All six milestones that were decided 
upon at the start of the project [99] have been successfully met: something that part 
way through the development seemed unlikely. 
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10.2. Future extensions 
 
Many features that I want to add to Tarmac have not been possible to implement in 
the time available. One such feature is the development of an armlet interpreter that 
would be used to verify that the armlets being generated are completely correct by 
emulating software using them. It could also be used to test the principles of the 
dynamic recompiler in a full system emulation before attempting the same thing with 
machine code. I would also like to experiment with developing a threaded interpreter 
based on armlets, which would result in a fast and completely portable ARM 
emulator. 
 
More questions have arisen concerning optimisation than have been answered. It is 
still not clear how aggressive optimisations can be before the benefit in code quality is 
undermined by the expense of recompilation. The same can be said of the register 
allocation method. Though dynamic allocation generates the best code, it is difficult 
to know the possible benefits of alternative methods without implementing them. For 
these experiments to be possible, the dynamic recompiler has to be emulating real 
program code, something that it currently struggles with because of remaining 
glitches. It would certainly be an interesting and worthwhile project to investigate 
such dynamic optimisations. 
 
Over the duration of this project, there have been many developments in ARM 
emulation. While writing this report, emulators for the Nintendo Gameboy Advance 
started to appear. With its simple code (a single ROM image), relatively simple 
address space, and 32-bit PC ARM processor, it is a far more attractive platform for 
experimenting with dynamic recompilation than a full RISC OS computer. Red 
Squirrel has advanced too and is now able to emulate later ARM processors that use a 
32-bit PC. With this in mind, the simpler 32-bit-PC mode and the Thumb instruction 
set (used in the Gameboy Advance) are priorities to be added to Tarmac so that it can 
be used to fully emulate these systems. 
 
With the completion of the x86 generator and dispatching framework I would like to 
retarget the ARM emulator, probably to another RISC platform. MIPS would be a 
good choice, as the lack of condition flags on that processor would highlight the 
benefits of the redundant flag elimination optimisation. Additionally it would be 
interesting to attempt to recompile from the 26-bit-PC mode ARM code to 32-bit-PC 
mode ARM code. This would be useful in supporting RISC OS on the newer range of 
ARM processors that no longer support 26-bit-PC mode. 
 
Development of Tarmac is continuing, moving towards integrating it into Red 
Squirrel as that emulator’s primary CPU emulation. This will provide a level of 
performance never before seen in ARM emulation and prove that running ARM 
software on other platforms at realistic speeds is possible. 
 
10.3. Skills learned 
 
The amount of learning required for this project was considerable. Quite apart from 
studying all available compiler and JVM techniques, an extremely intimate 
knowledge of the ARM processor had to be developed. 
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As well as the knowledge of techniques that was needed, programming in C++ and 
using the Visual C++ environment were both skills that I initially lacked. I have also 
learnt x86 assembly language from scratch. 
 
10.4. Final conclusions  
 
The release of several Nintendo Gameboy Advance emulators as this report is being 
concluded have reinforced the existence of the problem that projects such as this set 
out to solve. Despite having to emulate an ARM processor running at just 16MHz, 
these emulators run significantly slower than the real hardware on fast modern home 
computers. 
 
This project has been successful in clearly demonstrating the techniques that can be 
used for a dynamically recompiling emulation of a modern microprocessor. I’m 
particularly proud of the innovative optimisations and their implementation. This has 
moved away from the traditional optimisations used in recompiling JVMs that are 
inappropriate for real machine code emulation. The actual method of translation, 
using a single pass over the source machine code, although going to great lengths to 
avoid a second pass, works very well. Many of these techniques have had to be 
developed from scratch or modified from traditional compiler algorithms. 
 
The project has been an extremely large and difficult one by any standards though has 
also been very rewarding, in terms of both the material produced and the recognition 
it has received. Indeed, I am very proud that one of the designers of the original ARM 
processor came across this project which lead to an offer of a position developing a 
recompiling emulator for their new architecture. 
 
The problems of emulating a real microprocessor using dynamic recompilation are far 
from solved, though I believe this project has made a contribution towards this goal. 
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Appendix A – Overview of ARM assembly 
 
This appendix contains brief examples of typical ARM instructions, their syntax and 
their operation, sufficient to understand the ARM assembly examples in this report. 
 
Data Processing 
 
Data processing instructions are the logic and arithmetic operations (with the 
exception of multiply). Most of the instructions have a destination register specified 
and set its value to the appropriate result, as described: 
 

AND operand1 AND operand2 
EOR operand1 EXCLUSIVE-OR operand2 
ORR operand1 OR operand2 
MOV operand2 (simply moves the value) 
BIC operand1 AND (NOT operand2) 
MVN NOT operand2 (inverts and moves the value)  
SUB operand1 – operand2 
RSB operand2 – operand1 
ADD operand1 + operand2 
ADC operand1 + operand2 + carry flag 
SBC operand1 – operand2 – (1 – carry flag) 
RSC operand2 – operand1 – (1 – carry flag) 

 
Other instructions perform a logical or arithmetic operation but don’t place the result 
in a register and just update the condition flags. These instructions and their operation 
are: 
 

TST operand1 AND operand2  
TEQ operand1 EOR operand2 
CMP operand1 – operand2 
CMN operand1 + operand2 

 
All these data processing instructions have one operand which must be a register and 
another which can either be a register, a register shifted in some way or an immediate 
value. The five methods of shifting available are: 
 
 LSL logical shift left by n positions 
 LSR logical shift right by n positions 
 ASR arithmetic shift right by n positions 
 ROR rotate right by n positions 
 RRX rotate right with extend (through carry flag) by 1 position 
 
Examples of the syntax of these data processing instructions are: 
  

add r0,r1,r2,lsl #1 ; r0 = r1 + (r2 << 1)
cmp r0,#10 ; compare r0 to 10
mov r0,r1,lsr r2 ; r0 = r1 >> r2
sbc r0,r1,#1 ; r0 = r1 – 1 – (1 – carry flag)
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Multiply 
 
There are two types of multiply instruction, normal multiply and multiply-with-
accumulate. They only take straightforward registers as operands. For example 
 

mul r0,r1,r2 ; r0 = r1 * r2
mla r0,r1,r2,r3 ; r0 = (r1 * r2) + r3

 
Single Data Swap 
 
This instruction is used to perform an atomic swap between registers and memory, 
specifically for implementing sempahores. The instruction takes three register 
operands and has the syntax 
 

swp r0,r1,[r2]

 
This instruction takes the location specified by an address in r2, loads the value from 
that location in memory and places it in r0. The value in r1 is then stored in memory 
at that location. The instruction can also operate on byte quantities by suffixing a ‘B’ 
to the instruction mnemonic. 
 
Single Data Transfer 
 
These instructions allow a single value to be loaded from memory into a register or 
stored from a register to memory, operating either on byte or word (32 bit) quantities. 
These instructions come in a myriad of different addressing modes but all have a 
register that contains a value to be stored, or that the value to be loaded should be 
placed in. They also all have a register that contains the base address in memory for 
the operation to take place. Finally they all have an offset from that base address 
which when combined with the base gives the actual location to transfer data to/from. 
This offset can be a register, a shifted register or an immediate. 
 
Additionally the offset can be added to the base address before or after the data 
transfer takes place (i.e. pre or post addressing) depending on whether the offset is 
inside the square braces or not. The address resulting from combining the base and the 
offset can optionally be written-back into the base register or not (denoted by a ‘!’). 
Typical instructions are as follows: 
 

str r0,[r1,#4] ; memory[r1 + 4] � r0
ldr r0,[r1],#1 ; r0 � memory[r1]; r1 +=1
ldrb r0,[r1] ; r0 � memory[r1] & 0xff
strb r0,[r1,r2,lsl #2] ; memory[r1 + (r2 << 2)] � (r0 & 0xff)
ldr r0,[r1,r2]! ; r0 � memory[r1 + r2]; r1 += r2

 
Block Data Transfer 
 
These instructions allow any combination of the registers to be either stored to 
memory or loaded from memory. Each instruction has a base register, containing the 
address at which the transfer is to start, and a list of registers to be transferred. The 
instruction is also configured to increment or decrement the address being stored at, 
either after or before each register is transferred. Again, the final address when all 
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registers have been transferred can be written back to the base register (denoted by a 
‘!’). Typical instructions are: 
 

ldmia r0,{r1-r14} ; load r1 – r14 from memory
incrementing after each

stmdb r0,{r1,r3,r5} ; store r1,r3,r5 to memory
decrementing before each

ldmib r1!,{r1,r12} ; load r1 and r12 from memory
incrementing before each and
writing the final address back
into r1.

 
Branch 
 
There are two forms of branch instruction which allow a branch +/- 32 Mbytes from 
the current instruction. They are a normal branch instruction and a branch-with-link, 
the latter placing the address of the instruction after the branch into r14 before 
branching. For example 
 

b 0x12345678 ; normal branch
bl 0x87654321 ; branch with link

 
Note that the PC register, r15, can be used as the destination of any data processing 
instruction which is another way to adjust the PC. 
 
SWI 
 
A software interrupt instruction triggers a software interrupt exception which allows 
the operating system to access a specific routine. This routine is specified in the 
instruction’s encoding as a 24 bit comment field. SWI instructions are typically 
referred to by name, although encoded as a number, some example are as follows: 
 

swi OS_WriteC ; write the char in r0 to the display
swi OS_BinaryToDecimal ; convert an integer to a string
swi 0x400c6 ; equivalent to Wimp_CloseWindow

 
The S flag 
 
Most ARM instructions that might adjust the flags have a so called ‘S’ flag. If the S 
flag is set in an instruction’s encoding then the result of that instruction is used to 
update the processor condition flags. This is denoted by an ‘s’ being suffixed to the 
instruction mnemonic, for example: 
  

adds r0,r1,r2
muls r0,r1,r2

 
Conditional execution 
 
The one thing all ARM instructions have in common is that they are conditionally 
executed. This means that prior to each instruction, its condition field is compared to 
the current processor condition flags (Negative, Zero, Carry and Overflow) and only 
if the condition is satisfied is the instruction executed. The conditions available are as 
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follows with their meaning and condition flags for the condition check to be 
successful: 
 

EQ – Equal (Z set) 
NE – Not Equal (Z clear) 
CS – Carry Set (C set) 
CC – Carry Clear (C clear) 
MI – Negative (N set) 
PL – Positive or Zero (N clear) 
VS – Overflow Set (V set) 
VC – Overflow Clear (V clear) 
HI – Unsigned Higher (C set and Z clear) 
LS – Unsigned Lower or Same (C clear or Z set) 
GE – Greater or Equal (N set and V set, or N clear and V clear) 
LT – Less Than (N set and V clear, or N clear and V set) 
GT – Greater Than (Z clear, and either N set and V set, or N clear and V clear) 
LE – Less than or Equal (Z set, or N set and V clear, or N clear and V set) 
AL – Always (whatever the flags) 
NV – Never (never executed) 

 
Further information 
 
There has only been space here to briefly describe most of the ARM instructions. For 
more information you should refer to any of the ARM data sheets. 
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Appendix B – Armlet definition 
 
This is the definition of all armlet instructions used by Tarmac. The inflags and 
outflags are the defaults for a given armlet related to its ARM instruction origins. 
Each armlet can be generated with a different set of inflags/outflags adjusted 
according to the circumstances in which the armlet is to be executed. The use of each 
armlet is defined in terms of the instruction mnemonic followed by a series of letters 
(denoting armlet variables) and # symbols (denoting immediate constants). 
 

armlet use inflags outflags operation 
adc adc a,b,c xxCx NZCV a = b + c + carryflag

add add a,b,c xxxx NZCV a = b + c

and and a,b,c xxxx NZxx a = b & c

asr asr a,b,c xxxx xxCx a = b arithmetic-shift-right c

cleartrans cleartrans xxxx xxxx Tell the MMU to clear the Trans flag 
cmn cmn a,b xxxx NZCV Set flags according to the result of a - (-b) 
cmp cmp a,b xxxx NZCV Set flags according to the result of a - b 
eor eor a,b,c xxxx NZxx a = b ^ c

getpc getpc v,# NZCV xxxx Place the PC and PSR into a variable (the # is the PC) 
goto goto # xxxx xxxx goto armlet number # unconditionally 
gotocc gotocc # xxCx xxxx goto armlet number # if flags denote carry clear 
gotocs gotocs # xxCx xxxx goto armlet number # if flags denote carry set 
gotoeq gotoeq # xZxx xxxx goto armlet number # if flags denote equal 
gotoge gotoge # NxxV xxxx goto armlet number # if flags denote >= 
gotogt gotogt # NZxV xxxx goto armlet number # if flags denote > 
gotohi gotohi # xZCx xxxx goto armlet number # if flags denote unsigned > 
gotole gotole # NZxV xxxx goto armlet number # if flags denote <= 
gotols gotols # xZCx xxxx goto armlet number # if flags denote unsigned <= 
gotolt gotolt # NxxV xxxx goto armlet number # if flags denote < 
gotomi gotomi # Nxxx xxxx goto armlet number # if flags denote negative 
gotone gotone # xZxx xxxx goto armlet number # if flags denote not equal 
gotopl gotopl # Nxxx xxxx goto armlet number # if flags denote positive 
gotovc gotovc # xxxV xxxx goto armlet number # if flags denote overflow clear 
gotovs gotovs # xxxV xxxx goto armlet number # if flags denote overflow set 
intcheck intcheck v,# xxxx xxxx Check for interrupts after # ARM instructions 
ldb ldb a,b,c xxxx xxxx load byte at address b into a, success flag in c 
ldw ldw a,b,c xxxx xxxx load word at address b into a, success flag in c 
leave leave # NZCV xxxx leave the chunk, # is the reason code 
lsl lsl a,b,c xxxx xxCx a = b << c

lsr lsr a,b,c xxxx xxCx a = b >> c

mov mov a,b xxxx NZxx Set a to the value of b 
movc movc v,# xxxx xxxx Move a constant into a variable 
mul mul a,b,c xxxx NZxx a = b * c

mvn mvn a,b xxxx NZxx Set a to the value of negative b 
orr orr a,b,c xxxx NZxx a = b | c

ror ror a,b,c xxxx xxCx a = b rotate-right c
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rrx rrx v,v xxCx xxCx Perform rotate-right 1 location through carry flag 
sbc sbc a,b,c xxCx NZCV a = b - c - (1 - carryflag)

setpc setpc NZCV xxxx Place the program counter value in the pc variable 
settrans settrans xxxx xxxx Tell the MMU to set the Trans flag 
stb stb a,b,c xxxx xxxx store byte in a at address b, success flag in c 
stw stw a,b,c xxxx xxxx store word in a at address b, success flag in c 
sub sub a,b,c xxxx NZCV a = b - c

teq teq a,b xxxx NZxx Set flags according to the result of a ^ b 
tst tst a,b xxxx NZxx Set flags according to the result of a & b 
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Appendix C – Example code generation 
 
The greatest common divisor algorithm is represented in C as follows 
 

while( x != y)
{

if(x > y)
x = x – y;

else
y = y – x;

}

 
This can be written in ARM assembly as the following sequence of ARM instructions, 
with the initial values of 24 and 18. 
 

0x0: mov r0,#0x18
0x4: mov r1,#0x12
0x8: cmp r0,r1
0xc: subgt r0,r0,r1
0x10: sublt r1,r1,r0
0x14: bne 0x0
0x18: mov r15,r14

 
If the profiler is directed to recompile the entire sequence, the following armlets are 
generated. The arrows denote the leaders of the basic blocks, as identified by the 
optimiser. 
 

0x0: [xxxx->xxxx] movc t0,0x18 <--
0x1: [xxxx->xxxx] mov r0,t0
0x2: [xxxx->xxxx] movc t0,0x12
0x3: [xxxx->xxxx] mov r1,t0
0x4: [xxxx->NZCV] cmp r0,r1 <--
0x5: [NZxV->xxxx] gotole 0x7
0x6: [xxxx->xxxx] sub r0,r0,r1 <--
0x7: [NxxV->xxxx] gotoge 0x9 <--
0x8: [xxxx->xxxx] sub r1,r1,r0 <--
0x9: [xxxx->xxxx] intcheck t0,0x6 <--
0xa: [xxxx->xxxx] movc t1,0x0
0xb: [xxxx->xxxx] cmp t0,t1
0xc: [xxxx->xxxx] gotoeq 0xf
0xd: [xxxx->xxxx] movc pc,0x10 <--
0xe: [xxxx->xxxx] leave 0xb
0xf: [xZxx->xxxx] gotone 0x4 <--
0x10: [xxxx->xxxx] mov pc,r14 <--
0x11: [xxxx->xxxx] intcheck t0,0x1
0x12: [xxxx->xxxx] movc t1,0x0
0x13: [xxxx->xxxx] cmp t0,t1
0x14: [xxxx->xxxx] gotoeq 0x16
0x15: [xxxx->xxxx] leave 0xb <--
0x16: [NZCV->xxxx] leave 0x2 <--
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The interrupt checking armlets are in grey, to show just how many of the generated 
armlets are devoted to this task. This sequence of armlets is then converted into the 
following x86 instruction sequence. 
 

0: c7 c0 18 00 00 movl $0x18,%eax ; movc t0,0x18 ; mov r0,t0
5: 00
6: c7 c1 12 00 00 movl $0x12,%ecx ; movc t0,0x12 ; mov r1,t0
b: 00
c: 39 c8 cmpl %ecx,%eax ; cmp r0,r1
e: f5 cmc
f: 0f 98 45 3d sets 0x3d(%ebp)
13: 0f 94 45 3e sete 0x3e(%ebp)
17: 0f 92 45 3f setb 0x3f(%ebp)
1b: 0f 90 45 40 seto 0x40(%ebp)
1f: 0f 8e 12 00 00 jle 37 ; gotole 0x7
24: 00
25: 0f 98 45 3d sets 0x3d(%ebp)
29: 0f 94 45 3e sete 0x3e(%ebp)
2d: 0f 92 45 3f setb 0x3f(%ebp)
31: 0f 90 45 40 seto 0x40(%ebp)
35: 29 c8 subl %ecx,%eax ; sub r0,r0,r1
37: 0f 98 45 3d sets 0x3d(%ebp)
3b: 0f 94 45 3e sete 0x3e(%ebp)
3f: 0f 92 45 3f setb 0x3f(%ebp)
43: 0f 90 45 40 seto 0x40(%ebp)
47: 0f 8d 12 00 00 jge 5f ; gotoge 0x9
4c: 00
4d: 0f 98 45 3d sets 0x3d(%ebp)
51: 0f 94 45 3e sete 0x3e(%ebp)
55: 0f 92 45 3f setb 0x3f(%ebp)
59: 0f 90 45 40 seto 0x40(%ebp)
5d: 29 c1 subl %eax,%ecx ; sub r1,r1,r0
5f: 0f 98 45 3d sets 0x3d(%ebp)
63: 0f 94 45 3e sete 0x3e(%ebp)
67: 0f 92 45 3f setb 0x3f(%ebp)
6b: 0f 90 45 40 seto 0x40(%ebp)
6f: c7 85 c6 00 00 movl $0x6,0xc6(%ebp) ; intcheck t0,0x6
74: 00 06 00 00 00
79: c7 c2 30 2b 40 movl $0x402b30,%edx
7e: 00
7f: ff d2 call *%edx
81: 8b 95 c2 00 00 movl 0xc2(%ebp),%edx
86: 00
87: 0f 98 45 3d sets 0x3d(%ebp)
8b: 0f 94 45 3e sete 0x3e(%ebp)
8f: 0f 92 45 3f setb 0x3f(%ebp)
93: 0f 90 45 40 seto 0x40(%ebp)
97: 0f 98 45 3d sets 0x3d(%ebp)
9b: 0f 94 45 3e sete 0x3e(%ebp)
9f: 0f 92 45 3f setb 0x3f(%ebp)
a3: 0f 90 45 40 seto 0x40(%ebp)
a7: 81 fa 00 00 00 cmpl $0x0,%edx ; movc t1,0x0 ; cmp t0,t1
ac: 00
ad: 0f 98 45 3d sets 0x3d(%ebp)
b1: 0f 94 45 3e sete 0x3e(%ebp)
b5: 0f 92 45 3f setb 0x3f(%ebp)
b9: 0f 90 45 40 seto 0x40(%ebp)
bd: 0f 84 0d 00 00 je d0 ; gotoeq 0xf
c2: 00
c3: c7 c3 10 00 00 movl $0x10,%ebx ; movc pc,0x10
c8: 00
c9: c7 c0 0b 00 00 movl $0xb,%eax ; leave 0xb
ce: 00
cf: c3 ret
d0: 0f 98 45 3d sets 0x3d(%ebp)
d4: 0f 94 45 3e sete 0x3e(%ebp)
d8: 0f 92 45 3f setb 0x3f(%ebp)
dc: 0f 90 45 40 seto 0x40(%ebp)
e0: 0f 85 26 ff ff jne c ; gotone 0x4
e5: ff
e6: 8b 5d 38 movl 0x38(%ebp),%ebx ; mov pc,r14
e9: 0f 98 45 3d sets 0x3d(%ebp)
ed: 0f 94 45 3e sete 0x3e(%ebp)
f1: 0f 92 45 3f setb 0x3f(%ebp)
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f5: 0f 90 45 40 seto 0x40(%ebp)
f9: c7 85 c6 00 00 movl $0x1,0xc6(%ebp) ; intcheck t0,0x1
fe: 00 01 00 00 00
103: c7 c2 30 2b 40 movl $0x402b30,%edx
108: 00
109: ff d2 call *%edx
10b: 8b 95 c2 00 00 movl 0xc2(%ebp),%edx
110: 00
111: 0f 98 45 3d sets 0x3d(%ebp)
115: 0f 94 45 3e sete 0x3e(%ebp)
119: 0f 92 45 3f setb 0x3f(%ebp)
11d: 0f 90 45 40 seto 0x40(%ebp)
121: 0f 98 45 3d sets 0x3d(%ebp)
125: 0f 94 45 3e sete 0x3e(%ebp)
129: 0f 92 45 3f setb 0x3f(%ebp)
12d: 0f 90 45 40 seto 0x40(%ebp)
131: 81 fa 00 00 00 cmpl $0x0,%edx ; movc t1,0x0 ; cmp t0,t1
136: 00
137: 0f 98 45 3d sets 0x3d(%ebp)
13b: 0f 94 45 3e sete 0x3e(%ebp)
13f: 0f 92 45 3f setb 0x3f(%ebp)
143: 0f 90 45 40 seto 0x40(%ebp)
147: 0f 84 07 00 00 je 154 ; gotoeq 0x16
14c: 00
14d: c7 c0 0b 00 00 movl $0xb,%eax ; leave 0xb
152: 00
153: c3 ret
154: c7 c0 02 00 00 movl $0x2,%eax ; leave 0x2
159: 00
15a: c3 ret

 
The major feature of the code generation is the way that 7 ARM instructions expand 
to 23 armlets which in turn expand to nearly 100 x86 instructions. 
 
The insertion of the CMC instruction after the CMP (subtraction-based) instruction at 
address 0xe is to maintain the ARM-style carry flag, as described in section 9.5. The 
jne instruction at 0xe0 is notable for having been directly translated from the original 
bne instruction to a single gotone armlet and finally to a single x86 instruction. The 
constant folding has worked effectively, demonstrated by the way that the movc and 
cmp armlets have coalesced back into a single cmpl instruction at address 0xa7. 
 
The instructions from 0xf9 to 0x10b demonstrate the way in which the intcheck 
armlet has code generated to call a C function, passing arguments to and from the C 
program without leaving the generated code. The last two instructions place the 
number 2 in the EAX register (signifying a leave because of dynamic PC) and then 
execute a ret instruction to return from the native code in the same way as a C 
function would. 
 
With around 48% of the armlets being leaders of basic blocks, the over-zealousness of 
the flag spilling is highlighted by the repeated spilling of the condition flags to 
memory, despite them only ever being adjusted by a single armlet. This results in the 
repeated sequence of setcc x86 instructions in generated code. 
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Appendix D – Source code 
 
The source code is divided into several C++ files and header files for each class. The 
following table specifies the files with the data structures and classes that they define. 
The naming convention used by Visual C++ of prefixing class names with a ‘C’ has 
been followed, other types are implemented as C structures. 
 
File name   Type    System component 
 
Arm.cpp   CArm    ARM Interpreter 
ArmDisassembler.cpp  CArmDisassembler  ARM Disassembler 
ArmletDisassembler.cpp CArmletDisassembler  Armlet Disassembler 
CodeCache.cpp  CCodeCache   Code Cache 
Dispatcher.cpp  CDispatcher   Dispatcher 
Generator.cpp   CGenerator   x86 Generator 
LinkedList.cpp  CLinkedList 
LinkedList.h   LinkedListElement 
TarmacGlobals.h  Context 
    NativeChunk 
Optimiser.cpp   COptimiser   Optimiser 
Profiler.cpp   CProfiler   Profiler 
TestMemory.cpp  CTestMemory  
Profiler.h   Armlet 
    ConditionalBlockInfo 
Generator.h   GotoBackpatch 
    RegisterAllocation 
    VariableLocation 
 
To compile the program ‘as is’, a copy of the source code to Red Squirrel is required 
to supply the IOC, MEMC and coprocessor emulations. However, all attempts to 
access these components could be ‘commented out’ relatively easily in order to 
compile and test the code generation section of the project. 
 
The program has only been compiled using Microsoft Visual Studio 6 though it 
should compile with any other C++ compiler. If used with other compilers the source 
code may require simple modifications where the Visual Studio MFC CString class 
has been used for the various disassemblers. 
 
A daily diary was kept throughout the project development detailing the progress 
made and the problems faced. This has been included with the source code for 
completeness. 
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Appendix E – Glossary of Terms 
 
This is a brief glossary of some of the terms used in the report. It is included in an 
attempt to allow more readers to understand the report without patronizing 
experienced readers. 
 
2-address code – An instruction set that has an operation and only 2 operands (values 
used in that operation). Normally this results in the operation overwriting one of the 
operands with its result. Commonly found in the x86 architecture and older CISC 
processors. 
 
3-address code – An instruction set that has an operation and 3 operands. This allows 
an operation to take place without overwriting one of the operands. Commonly found 
in RISC architectures. 
 
Accessor method – A method which gives access to the state of an object, commonly 
used to ‘get’ or ‘set’ the value of a private variable. 
 
Address space – The space in memory that can be addressed by the processor. 
Typically for 16 bit processors this is 216 bytes or 64 Kbytes, or for a 32 bit processor 
this is 232 or 4 Gbytes. 
 
API – Application Programming Interface. This is a library of routines that allow an 
underlying system to be used by other software without the other software needing to 
know the details about how it works. 
 
Backpatching – A technique used in compilers when generating instructions. Any 
information that isn’t known when an instruction is generated is left blank and 
backpatched or ‘filled in’ later. 
 
Basic block – A sequence of instructions that executes from start to end without any 
possibility of executing another instruction in between. 
 
Breakpoint – Points in a program that are set by the programmer so that when that 
section is reached in execution, the program pauses and a debugging interface 
appears. This allows the programmer to interrogate the state of the program. 
 
Bytecode – The term used for the code that runs on a Java Virtual Machine. 
 
Condition flags – When a calculation is performed by an instruction, it sets certain 
condition flags, typically Negative, Zero, Carry and Overflow, describing the result of 
the instruction. Later instructions can then use the state of these flags to find out the 
condition of that calculation. 
 
Conditional execution – Where an instruction is only executed if the condition 
associated with it is successful. Often this means that the condition code matches the 
state of the condition flags. 
 



 100

Control flow – Control flow is a term used to describe the flow of execution from one 
instruction to another and how it might be modified by an instruction which branches 
to another part of the program. 
 
Coprocessor – A specialised chip to execute certain calculations faster than the main 
processor could do them. These are commonly used for floating point arithmetic, 
digital signal processing and graphics processing. 
 
Delayed branches –When a branch instruction occurs, the instruction immediately 
after it is executed before the branch is taken. This allows better pipelining as 
conditional branches no longer cause the pipeline to empty. 
 
Dynamic profiling – Rather than statically examining a program as a list of 
instructions, if information can be stored about exactly which instructions the 
processor executes when running the program, far better results about the program’s 
execution can be gained. 
 
Host system – See Native System. 
 
Immediate value – operands can either be encoded in instructions as registers or as 
numbers. An immediate is simply a constant number encoded into an instruction. 
 
JIT - Just-In-Time is the term used to describe a Java Virtual Machine that 
recompiles every method to native code before it is executed. 
 
Leader – The leader of a basic block is an instruction that marks the start of a basic 
block. This tends to be instructions that are branched to and instructions that occur 
directly after branches. 
 
Memory-mapped IO – Components of the computer need some way of being 
accessed by programs. This is done by mapping sections of the address space to them 
so that programs can access the device as if accessing memory. 
 
Method – Is very similar to a function in imperative programming languages. The 
difference is that a method ‘belongs’ to a certain object in object oriented 
programming. 
 
Naïve algorithm – An algorithm that takes the obvious and inefficient approach to 
solving a problem. 
 
Native system – The system that is running the emulator and which has machine code 
for it generated by the recompiler. 
 
Operand –A value that is passed to an instruction for it to perform its operation on. 
 
Orthogonal – a feature of a microprocessor that can be used in the same way by all 
other features. For example, an add instruction that can accept any one of the 
registers, including the PC as an operand. 
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PC – The Program Counter. A special register that holds an address in memory 
pointing to the instruction to be executed. 
 
Pipelined – A processor that performs several operations at one to increase speed, for 
example fetching one instruction while decoding the previous instruction while 
executing the one before that. 
 
Portable – A program that can be transported to another architecture and made to run 
there with only minor changes. 
 
Register bank – A register bank is a set of registers. It is common for modern 
processors to have more than one bank and to be able to quickly switch between 
which one is to be used. 
 
Register Transfer Language - A simple language that describes how values change 
between registers. Commonly used to describe the operation of an instruction. 
 
RISC – Reduced Instruction Set Chip. A processor that has relatively simple 
instructions (often discounting even division as being too complex) that can be 
executed quickly. The actual meaning of the term has become blurred and is generally 
used to refer to any processor of the late 1980s or later. 
 
Source system – The system being emulated and the system that has its instructions 
recompiled into native code. 
 
Static branch prediction – Normally a conditional branch is known to be executed 
or not most of the time. By the instruction reflecting whether the branch is likely to be 
taken or not, the pipelining can continue down the path that is most probable, 
improving performance. 
 
Status flags – These are flags that hold details about the current state of the processor. 
These generally include details about whether interrupts are enabled and the current 
processor mode. 
 
Target system – See Native System. 
 
Translation unit – A section of source code that is recompiled  to a section of native 
code. 
  
Vector – A location in memory that is branched to in specific circumstances such as 
when an interrupt occurs. The code at the vector address then deals appropriately with 
the event. 
 
VHDL – Very High Speed Integrated Circuit Hardware Description Language. A 
language used to explicitly define the operation of integrated circuits. 
 
x86 – The name given to generically refer to any processor compatible with Intel’s 
range of 8086, 80186, 80286, 80386, 80486, Pentium and Pentium 2-4 processors. In 
this report, it is the 32 bit versions, the 80386 and above that are used. 
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Appendix F – Advice on attempting similar projects 
 
CPU emulation is far from the only important part to emulating a computer. Unless 
the graphics emulation is well written too, it will cripple the emulator’s performance. 
That said, using techniques such as dynamic recompilation will minimise the 
processing time required by the CPU emulation, leaving even fairly naïve graphics 
emulations enough time to appear to perform well. 
 
I believe it is more important to know the target processor than the source processor 
when starting a dynamic recompilation project. The reason is that the level of 
knowledge required to emulate a processor surpasses any general knowledge someone 
may have about that processor. The only way to get the knowledge required is by 
referring to very low level documentation such as processor data sheets. In contrast, 
the level of knowledge required of the target processor is little more than that of any 
good assembly programmer. 
 
It is very important to build a competent interpreting emulator before attempting a 
dynamic recompiler. Without it there is little to compare the recompiler’s operation to 
and no guarantee that bad assumptions about the source processor have not been 
made. If an existing third party’s interpreting emulator is suitably well written, it may 
be possible to use this to refer to and test the recompiler against. This is recommended 
in order to allow the maximum possible time for developing the recompiler. 
 
Debugging any emulator requires good detective skills, debugging a dynamic 
recompiler is a job for Sherlock Holmes - it is hard to underestimate the problems of 
debugging a dynamic recompiler. All that can be recommended is that every effort be 
made to cross-reference and test every level of the program. I cannot emphasize 
enough how much faster it is to perform exhaustive testing during development than 
to try to find the bugs afterwards. It is particularly tempting with an emulation project 
to press ahead to attempt to get early results. This temptation must be ignored. 
 
There are no early results with an emulation project. Hundreds of man-hours are 
required to make any progress at all and hundreds more to make an emulator perform 
at an acceptable level of compatibility and speed. 
 
As a result of the difficulty of getting real code to emulate correctly, a dynamic 
recompiler for a real computer system pushes the boundaries of what is feasible in the 
time available for a university project. For those that attempt this, I would recommend 
every opportunity be taken to simplify the project. Whether this means choosing an 8 
bit source processor or using static register allocation, there is little need to attempt to 
add extra complexity to the project. The words of Steve Furber, when talking about 
designing the original ARM processor, are particularly apt: 
 
“When venturing into unknown territory it is advisable to minimize those risks which 
are under your control, since this still leaves significant risks from those factors which 
are not well understood or are fundamentally not controllable.” [100] 


