Development diary

This diary was kept manly for persond reference and for the perusa of hdpful
people around the world in the hope that ther indghts to my way of thinking might
save me time and trouble. It aso provides some entertainment to look back on how
little | knew a the beginning. This diary comes with a hedth warning, it has been left
as it was written, often late a night and over many months. It should provide
interesting reading to anyone else gpproaching a smilar project to see how this one
progressed. Note, the entries are in reverse-chronological order, the most recent firdt.

13/3/01
Project presentation day.

12/3/01

Completed code generation of al ingructions necessary to demondrate the GCD
example. Worked on register dlocation problem so that adlocations can be exchanged
between basc blocks if needed. Work ill necesssy on combining spilling of
congtant pool to code at the end of basic blocks and spilling dlocated regs to memory
ance thaer may be some redundancy there and by the code co-operating this can be
reduced. Final preperations for the presentation.

11/3/01

Incredible progress with x86 code generation. Ingruction sdection done using
multiple if.then daements for ultimate flexibility. Implemented the add amlet
completdy and it worked. Followed this up by implementing most of the features of
the congant pool to dlow congant evduation a compile time, this involved
evauating the movc and mov amlets. Added support for the cmp armlet including the
awkward nverted carry problem by suffixing it with cmc to invert the carry flag back
to ARM format (if SBC were used then it would be slly to have two cmc's next to
each other so work will be needed here). Added support for all goto amlets and
backpatching which works correctly after a small issue where | had to find out that the
x86 PC points to the ingruction after the one being executed (according to objdump’s
disassembly) so dl jmp ingtructions were off by 6 bytes (the number of bytes taken up
by the jmp indruction). I've initidly just used far jmps (32 bit offsats) for amplicity
though most of the time only 8 bit jumps are required (snce chunks are so smdl),
some adjustment here would probably be fairly smple though near jmps take fewer
bytes than far jmps which may cause complications for backpatching. Implemented
part of the sub armlet’s generation needed for the GCD program. Linked the objdump
execution into the program using system command to call the DOS program.

10/3/01

Restructured the object mngruction so that it was as dean as my design sad it should
be and so that errors that appeared yesterday are gone forever. Spent the rest of the
day preparing presentation dides and handouts. The presentation preperation is
maostly complete now, with just the find finishing touches left to be done.

9/3/01
Progressed with the generation and execution of machine code. Generated severd
ingructions and was able to manipulate data in a memory block and return to C

without error. Then progressed to cal a C function from the generated machine code
and to be able to return a vaue from the machine code to C at the end of the execution
of the generated code. Condructed a smple CodeCache sructure, and other small
parts of the framework. | had hoped to make good progress with the red armlet to x86
trandation but was dogged with smdl but incredibly frudrating idiosyncratic errors.
Findly worked round them dl by the end of the day.

8/3/01

Tested and vaidated the basic block detection and the redundant flag caculation
eimination. Fixed issues with the conditiond block optimisation that had been
created by the adjustments made introducing INTCHECK. Continued to develop the
framework, specifiying native chunks, and amadgamating Julian brown's x86 asm
generator (which is bascdly a lig of macros defining indruction encodings) into my
code though there are some initid difficulties.

7/3/01

Tidied up updating of PC before leaving chunk. Tidied up generation of IOCLOCK
and SIGNALS so that they are now st one armlet, INTCHECK. INTCHECK takes
an argument which is the number of 10 clocks to perform and checks for interrupts
returning a non-zero vaue if an interrupt occurred. Verified that the recompiler in the
profiler works if given an address to recompile from and exits correctly. Implemented
the framework for the optimiser and generator and am pressng on with the generator
snce optimisations can be easly added later and I'd idedlly like to have the generator
mogtly working in time for the presentation. Tested the objdump x86 disassembler
that | extracted from GCC and verified that it can disassemble an object file passed to
it. Experimented with RS on a friend's lgptop in preperation for the presentation, as a
result of the limited speed, poor display refresh and awkward touch-pad mouse | have
opted to use my desktop PC. Stated coding the rule decison meking for the
generator. Converted the linked list of armlets into a buffer (to give indexed access)
then added basc block determination to the optimiser to identify the leaders in the
chunk. Wrote firgt draft of redundant flag remova which smply removes any outflags
settings which ae overwritten by a later armlets outflags settings without any inflags
requirements inbetween. This needs tegting.

6/3/01

Solved the rather nasty problem with coalesced branches — very complex but now
works pefectly, good optimisaion as well. Enquired after the Dhrystone
benchmarking that Julian did (he will be able to send it to me in a few weeks) and got
in contact with Mohsen @out ARMIndex from ArmSl4 (unrdleased). Met with
Graham, discussed report contents and presentation style.

5/3/01

Added flag information generation to IR generator. Demondrated to mysdf the it
trandated code ok and fixed some bugs in generaion. Dedth with the problem of
TEQP ingructions which had been omited before, these directly write to the ARM
PSR and are awkward in amongst the otherwise well behaved data processng
indructions. Hit problem with codescing the conditional execution that was not
anticipated in that a branch ingruction could go back to pat way through the
coalesced block and would need conditional execution code there to handle it. If
severd such branches existed then it would be nasty patching the code to cope with

them, this will be attempted tomorrow. Spoke to Sara concerning register alocation
techniques, she confirmed my concerns about the standard compiler techniques and
recommended that | keep it smple, avoid datic register dlocation (because of the
limted number of registers available) and ether use the linear scan method if it seems
useful or got for a ample spill a regiger with gngle ingruction lookahead. Wrote
draft report contents to discuss with Graham.

4/3/01

Spent most of today adding the block data transfer indruction trandation from ARM
to amlets. This was very, very, complex — particular issues involve what to do with
exceptions (drop back to digpatcher), what to do with ingtructions that are forced to
operate on the user mode register bank (drop back to dispatcher) not to mention al the
possible varieties of code to be generated. Added the coprocessor instruction
trandations but they al drop back to the dispatcher since embedding coprocessor
emulation is not redly sendble because @) it's complex b) it wouldn't be eadly
extendible c) it would lead to code bloat. This completes the actud trandation from
ARM to amlets, the next phase is optimisation and x86 generation (which should be
alaugh).

3/3/01

Wrote code to trandate single data trandfer ingructions, the SWP ingtruction, and
branch ingructions. Also rewrote the SWI ingtruction s0 that rather than attempting to
embed mode-switching into the recompiled code it sets the PC to point to the
indruction and leaves, sgndling the reason for leaving as being a SWI. On firs
ingoection this seems a little slly, why recompile the SWI code a dl, it would surdy
be better if the ingtruction before the SWI performed a lookahead and saw that the
SWI was not to be recompiled, so ended the chunk there. However, the SWI could be
conditiondly executed which would mean the chunk was ended unnecessarily. Also
the STM/LDM block data transfer ingtructions can temporarily force a mode change
when they access the user mode register bank from other modes, this is not redly
senshle to determine from lookahead (as it would dow down lookahead which would
need to be done for every ingruction) and so would need to leave partway through the
ingtruction. Hence the reason that the SWI ingtruction generates the code to leave.

2/3/01

Discovered that the armlets being mistrandated were actudly being trandated fine (if
ingppropriately) but the amlet dissssembler wasn't handling them properly.
Developed armlet disassembler to handle all opcode and operand types. Tested the
profiler with sequentid ingructions with the same conditiond execution code and
with a dight adjusment that worked fine as implemented previoudy. Backpatching of
gotos for conditional execution works fine. Implemented trandation of the ARM
branch ingruction to amlets. The GCD program is now converted pefectly into
amlets.

1/3/01

Back on the project having completed the current uses essays this afternoon. Spent the
intervening time reading up on compiler optimisations, indruction sdection and
register dlocation issues from compiler literature.

Started testing framework for IR generation. Using the TetMemory class loaded the
GCD cdculating program and trandaed the firgt ingtruction. Commenced work on
the framework of the armlet disassembler and evidenced that the firgt indruction of
the GCD program had been successfully trandated though there seems to be a lot of
other armlets that have been midrandated, some investigation will be needed into

what is happening.

28/2/01

Have been reading up on regiser dlocation agorithms and ingruction seection
(maxima munch). Decided to tadk to Sara concerning register dlocation, graph
colouring seems excessive but the lineer scan method looks possible if | go down the
dynamic route.

21/2/01

Spent some time consdering optimisations on the IR.

Profiling usage of ARM regs, r0, rl used alot, r14 r15 used most.

Profiling interpreter to see what's used most — generic speed & hints for dynarec.
Unable to get working.

20/2/01

Spent some time conddering my options as regards exceptions, in light of the
complexity of the SWI indruction and the impending problems from adddress
exceptions and data aborts. Following much discusson with Graeme Barnes about the
issues aisng from my amlet desgn, it seems sensble to handle dl mode changes
(and therefore exceptions) from C rather than trying to put massve amounts of
tedious and sddom used processng into generated code. Still pondering explicitly
fetching ARM regs into amlet variables, this is as yet undecided but doesn't affect
development much - decisons about x86 generation are bound to influence this.

Met with Graham — quantity not quality. Important to descibe what my project does
that hasn't been done before.

19/2/01

Implemented the armlet generation for MUL/MLA and SWI, started looking a2 SWP
but paused to consider the complexities of memory access.

When | redised the complexity of recompiling the SWI exception to change modes,
swapping multiple registers etc. there was a temptation to drop back to the dispatcher
to handle this. However, it seems necessary to leave the IR with the ARM detals in a
dable date and not completing an indruction after recompilation has been Sarted
(eg. IOCLOCK emitted) could cause plenty of potentid problems (not to mention
being a cop out).

Sated the shel of the amlet disassembler though there is little point in continuing
with it until more of the IR generator is complete so that the IR is concrete. Otherwise
| could find the armlet disassembler goa posts being moved by varigtionsin the IR.

The next thing to do is to evduate dl the optimisations | have in mind to decide
exactly which ae to be implemented given the limited time avaldble and then
trandate the linked list of amlets to the find Storage state. Once this is done and more
amlet generation is implemented a dat can be made on the amlet interpreter for
debugging the armlet generation.

18/2/01

Spent a lot of time writing the generation of code for data processing ingructions and
inparticular the barrd shifter which | had anticipated being a problem but was a lot
worse than | ever imagined. The code has been written and now needs to be tested in
detail.

Refined parts of the desgn of the IR, paticulaly in relation to adjustments to the PC
and modes, largely shifting the responsbility onto the dispatching adgorithms. Now
that the barrd shifting is dedt with most of the rest of the trandation should be farly
draightforward if timeconsuming, with the exception of LDMA.

Peformed some smple dynamic profiling to discover the frequency of the different
types of exceptions. It appears that though there are a cluster of data aborts early on in
execution (I believe in the POST), following that nearly al exceptions are either IRQs
(presumably from mouse pointer movement) or SWIs (about 5 times as many SWIs as
IRQs). These two exceptions occur farly regularly, around every 1000 instruction
executions, and certainly not more than about 10000 executions gpart. There is the
occasond undefined indruction which | suspect is probably the floaing point
emulator being used (when drawing the bezier curves again in Draw).

17/2/01

Progress made with IR generation, many more problems have come to light such as
the complexity of the LDM” operation (particular regarding exceptions) in that it
doexn't fit in nicdy with the IR design and | will need to add some kind of meta
control statements, or dlow amlet indructions to be used to not affect ARM
regdflags. Also the memory access problem from exceptions needs handling so as to
soill regsflags and throw the exception, in the event of memory falure (which will
occur once in a blue moon).

Peformed some brief dynamic profiling of red code today and found to my
amazement that SVC mode is used for dragticaly more time than any other mode. See
datsin IR design doc.

16/2/01

Developed the framework to ded with codescing blocks of sequentid ingtructions
with the same conditiond execution code and the backpatching to ded with
conditional execution in generd. Started the development of the decoding and the
emitting of armlets to the linked lis. Developed the TetMemory class, something
that would have been useful for testing the interpreter and disassembler which just
gves access through a common interface to fla modd memory rether than memory
through MEMC.

15/2/01

Wasted large amounts of the day looking into the problems of hash tables and linked
ligts for IR generation. Developed my own hash but have findly decided b plump for
STL maps for hash tables for the moment returning to my own implementation if they
prove inefficient. STL linked lists appear to be more chalenging and possbly more
expengve, | will therefore probably work with my own implementation which seems
to operate fine.

14/2/01

Began work on the implementation of the IR generation. Understood basc agorithm
and investigated different ways of backpatching the internal jumps in the IR. Devised
an dgorithm so that sequentid indructions with the same conditiona execution code

(that don't affect the condition flags) can dl use just one check of the condition on the
fird indruction rather than unnecessarily repeetig it (as happens in ARMphetamine's
IR). This is added into the code generation rather than as a post-generation
optimisation. Needs red testing.

Spent a lot of time looking a how to cdl machine code from C++, udng ether inlined
assembly to cal the buffer address, or casting the buffer containing the machine code
to a C function which can then be cdled as any other C function. The former is
preferred since it's more explicit but may prove nastier once parameters are involved.
Have s0 far falled to cdl a C function back from the machine code, but usng CALL
with a regiger contaning the function address (rather than an immediate encoded
offset to afunction) issureto fix this,

13/2/01

Started to investigate cdling C functions from asm

Under the interpreter, used the command line interface with the filer_run command to
load paint/draw/configure without having to use the filer which is suffering from
bugs.

Eliminated need for updating rl5 in block data transfer indructions which dlows a
sngle vaaddr armlet to throw and address exception if an addressisinvdid

Met Graham

Spoke to Sara about IR being closer/further from x86 i.e. dlow rO=r1+r2 or just
rO=r0+rl. Recommendation that | should keep it more generd, in the syle of
compiler IR’'s, this dlows optimisations and is the more general case, dso dlows
sensble portability. This problem is normally tackled a code generation.

Experimented with cdling C functions from inlined aam and dso C++ functions with
MSVC's name mangling

12/2/01

Lost several days to 4000 word CU essay
More design of IR

More discusson with GB

6/2/01

meeting with s’ta — ARM spec from Leeds/Cam, heuridtic identification of loops/if-
then-else, optimisations separate, keep it Smple — drop back to interpreter

gpeed comparison with RS — release build winzk, RS 2.74 MIPS my interpreter 2.36
MIPS at rest.

DebugOpt my interpreter 2.24,

GB'’s idea of limiting recompiling to a page, or dynamic-destination branch so as to
have larger recompiled areas, not have problems with pages changing, make it esser
to dump sections of code

Started implementation of digpatcher and profiler classes

5/2/01

megting with graham — for next week do dispatcher and profiler and IR generation
completely.

consdering hashes

consdering LRU dgorithm

4/2/01

emails with dynarec group, Julian’s comment “wow”

3/2/01

The day sarted badly when it became agpparent that the emulaion had outgrown my
preferred method of debugging. Running my interpreter severd times rarely produced
the same result and a Smilar phenomenon was found with the red squirrd interpreter.
| expected this to occur due to some kind of timing mechaniam in the rest of the RS
sysem. For example, a timer could be gtarted to tick every second updating parts of
RS. When the cdl to 10C.clock() is made from the interpreter this update would
affect the execution of ARM indructions. Due to the way timing works, the timer
would rardy tick at exactly the same number of indructions into the execution esch
time the emulator is run. This results in the direct comparison of trace dumps no
longer being a posshility for debugging since differences no longer conditute bugs.
This is not a digaster snce debugging is gill possble by intensve andyss of the
results though this was expected to dow progress dramatically.

Returning to the exception on the coprocessor indruction (noticed last night) trace
outputs quickly showed that this was hgppening around the 16 millionth ingtruction
execution when the ARM was attempting to read from a register of coprocessor #1.
This coprocessor had been initidised in the interpreter’s constructor method to point
to a dummy coprocessor. Accidentaly the dummy coprocessor was only localy
defined in the congructor rather than as a class member and hence when the
congructor finished, the dummy coprocessor object was destroyed, causing the
exception when it was accessed. The fact that this went undetected is not surprising,
coprocessors accesses are extremedy rare under RISC OS. Upon fixing this and testing
again | was more than alittle surprised to see RISC OS boot to the desktop!

Brief tests show that things are not perfect, disk access appears to be broken (in the
desktop a leadt, though command line access seems fine) and BASIC has some bugs.
However the command line, task manager, menus, fonts and generd desktop seems
fine which is a mgor achievement. In teems of the milestones lad down in the
progress report, this achieves the second of six development tasks and three of the
four compatability measures. The next sep is deveopment of the recompiler to
intermediate representation and possbly some more specification of milestones, snce
| fed the milestones | laid down in the progrss report are a little far apart to say the
least.

Updated the website.

2/2/01

Pressed forward with an attempt to make some red progress with the debugging.
Added a parameter file to my interpreter and the one from red squirrd so that
recompilation between tests was no longer necessary, which speeds up the rate of
tegting.

This new found efficiency resulted in a lot of progress usng the binary search across
the execution space: Fixed a bug where the MCR indruction was dways going to
throw an undefined ingtruction trap whether the coprocessor being accessed is present
or not (coprocessor ingructions had not been tested upto this point). Fixed another
bug where interrupts were not being correctly triggered. Fixed a bug in the interface
to Red Squirrel so that when the program is quit it didn't hang. To give an example of
the complexities of the debugging, here is the find bug found today.

My interpreter’ s incorrect results:

0x3811750: TEQP PC, #3 - Oxeae0O44ca, 0x0, 0x3200000, 0x8000,
0x3800001, Oxcd00, O0x0, O0x17d00, 0x8000, 0x36e010c, 0x40, 0x0,

0x3200000, 0Ox1f0136c¢, 0x0, 0x3811754, : cond=0x0 1=0x8000000 F=0x0
| i ne=6531120
Oxlc: B &381134c - OxeaeO044ca, 0x0, 0x3200000, 0x8000,
0x3800001, Oxcd00, O0x0, 0x17d00, 0x8000, 0x36e010c, 0x40, 0xO0,
0x3200000, 0x1f 0136¢, 0x0, 0x20, : cond=0x0 |=0x8000000 F=0x0
| i ne=6531121

Red Squirrd’ s correct results:

0x3811750: TEQP PC, #3 - Oxeae044ca, 0x0, 0x3200000, 0x8000,
0x3800001, Oxcd00, O0x0, 0x17d00, 0x8000, 0x36e010c, 0x40, 0xO0,
0x3200000, O0Ox1f0136c¢c, O0x0, 0x3811754, : cond=0x0 |=0x8000000 F=0x0
| i ne=6531120

Oxlc: B &381134c - OxeaeO44ca, 0x0, 0x3200000, 0x8000,
0x3800001, O0Oxcd00, O0x0, 0x17d00, 0x8000, O0x36e010c, 0x40, 0xo0,
0x3200000, Ox1f0136c¢c, 0x3811757, 0x20, : cond=0x0 |=0x8000000 F=0x0
| i ne=6531121

The difference is on the penultimate line of each interpreter’s output. The vaue for
r14 should be 0x3811757 after the TEQP PC#3 ingruction, but in mine was left as
0x0. TEQP peforms an exclusve-or on the two parameters, in this case the PC and
the number 3, then updates the PSR with the result. TEQP itsdf was operating
correctly, when the PSR was updated, the mode flags were changed to supervisor
mode. After that indruction, an IRQ exception occurred. This is not visble on the
output but obvious since the PC (a the start of the ling) for the B ingruction is Ox1C
which is the IRQ vector (0x18) + 4 (taking account of pipdining). Examination of the
IRQ exception implementation then ensued and it was found that when the IRQ
exception changed the mode to IRQ mode, it incorrectly updated r14 with the flags
taken from after this mode change when it should have been from before this mode
change.

The reader sould find it hard to discern exactly what | have described here and this is
indicative of the problems | had in locaing the problem. This only goes to highlight
the unusua complexities and detective skills needed to debug this sort of software.

This lag bug fix led to a breskthrough of sorts when the cursor that occurs
immediately before the RISC OS memory prompt gppeared (it should be noted that
the emulator then crashes out with an unhandled exception on a coprocessor
ingruction).

1/2/01

Spent some time assessing progress made so0 far in terms of the milestones laid out in
the progress report. Also looked a the dependencies between them in light of the
delays in success with the interpreter. Spent some time considering my designs for the
dispatcher and profiler and am farly happy with the framework as it is lad out. | need
to do a little research on fast hashing functions according to the characteristics of the
addresses of code to be generated. Also some research on limiting the size of the
cached code buffer so that it doesn't become too large, idedly some kind least-
recently-used dgorithm from conventional processor cache technology seems
suitable, how this can be implemented in software is another matter.

Note, lost the last few daysto Al coursework.

28/1/01

Further execution and debugging has got me as far as vdidaed upto indruction
execution 4,694,588. The screen now correctly turns from pink to blue and then to
black but the RISC OS cursor and memory display doesn't appear. The binary dop
method across the execution space is now likely to be the best way forward.

27/1/01

Ealy on in the day it became apparent that disassembling from a given address
onwards was not a satisfactory way of invoking the disassembly since the early parts
of RISC OS condst of some loops which run for many interations and thus later
dages of the looping could not be disassembled. Ingead | implemented an
executionCount (initally used the ingr count varigble to be compliant with RS
variable but it is unsuitable as it's reset every second when updating the MIPS display
on the RS datus bar) incrementing every indruction, so that the currently executing
indruction has a unique number. This worked sufficiently well to dump and compare
many hundreds of thousands of indructions.

One mgor bug was identified a ingruction number 981244 where it seemed that an
STRB r2[r2,r2] indruction was causng a data abort exception, this would occur if the
byte could not be written to memory. Having confirmed the address and vaue were
ok, it seemed likely there was an issue with the STRB ingruction. A dummy program
was written on the Risc PC (in a smilar way to the previous LDM/STM test) and run
on both, working perfectly. Some minor andysis went into the RS MEMC class to see
what the issue was. Eventudly this was narrowed down to a double negation on the
returned value from MEMC (when it should have only been a single one) which was
masked by my accessor method, used to make my interpreter independent of RS's
MEMC class. The dummy program did not catch this snce the issue was directly with
the MEMC interface which is not used when flat-modd memory is being used.

If bugs become less frequent (at the moment | seem to be finding one every few
100,000 ingtructions executed) | propse to use a binary search over the execution
goace (by execution count number). This idea is based on the assumption that an
incorrect indruction execution will corrupt (at leest in some smdl way) dl subsequent
execution — this has been my experience in dl the bugs found so far. | can therefore
search larger amounts of code faster usng a binary search rather than the linear search
(albeit not comparing every ingruction) employed so far.

At the end of the day have vdidated up to indruction execution 1,478,461 and
tomorrow will execute to beyond the tight loop which is being executed repeetedly at
that point.

26/1/01

Uncertainty over the effectiveness of the multiple data transfer indructions led me to
write a ample program, tested on the Risc PC which | then ran on the interpreter to
find thet it worked fine.

Set up Red Squirrd’s interpreter and my own so that for each instuction executed, it's
address, disassembled ingtruction, and dl registers and condition flags are output to a
text file. Each version is then run as if the RISC OS computer were just turned on (i.e.
from the same date that the emulator should be stated from) and the output data
collected, normaly in the order of 10 million indructions a a time. The two files are
then run through a comparison program which highlights any differences, these
differences are taken to be erors in my interpreter. With much detective work
involving; looking a the routines used to emulate the rogue indruction, the desred

result and the date of the emulated processor before and after it's execution, the
source of the problems can be tracked down.

Severa bugs have been found in this way, such as the fact tha the interrupt dissble
flags should both be set on gart up. This was only detected when the result of an add
ingruction taking r15 (the PC and PSR) as an operand was dightly incorrect. It was
noted that the bits not being set in the result were the ones for the interrupt disable
flags and from their the correction was straightforward.

Having executed severd tens of millions of indructions in this way, | finish today
having verified the interpreter correct upto the following loop of code:

0x380205c: LDM A R6!, { R2, R3}

0x3802060: EOR R2, R2, R4
0x3802064: ORR RO, RO, R2
0x3802068: EOR R3, R3, RS
0x380206c: ORR RO, RO, R2
0x3802070: ADDS R5, R5, RS
0x3802074: MWN R4, RS
0x3802078: BCC &380205¢
25/1/01

Compared the operation of about 90% (4000+ lines) of the interpreter code with that
of Red Squirrd which is known to work. Many bugs were discovered, generaly
caused by smal omissons or typos, though RISC OS 4ill does not boot. Some
progress has been made by disassembling each indruction as it is executed and
manudly looking for discrepancies. This will continue tomorrow on a smaler scae,
possbly usng Red Squirrd’s built in debugger to step through the code ingruction by
ingruction. Another possble solution is to try is to run the complete Red Squirrd and
output a disassembly of each ingruction executed and compare this to the same output
for my interpreter. Thisislikely to be agood way to highlight issues

The dday in progress is a cause of much frudration, however there are gill many
avenues to exhaust and just one single correction could lead to a bregk through. The
hope is that with an accurate interpreter complete, such tedious testing will not be
necessary for much of the dynamic recompiler, snce it's execution could be directly
compared to the reference interpreter for differences.

24/1/01

Debugged the disassembler by running it on a large program, dumping the output to a
file and then manualy comparing it to a known good disassembler for discrepancies,
this highlighted severd problems but it seems very good now. Coprocessor
ingructions are gill not supported because of time condraints but 1 do not anticipate
this to be a problem as they are not likedy to be the study of intimate debugging
because of the way they are implemented.

Having examined the initid dat up of RISC OS usng the dissssambler in
conjunction with GB’s rough notes on the purpose of different sections of code, | fed
that, as expected, more systematic testing of the interpreter is required. Although |
could plough on with the later dtages, as dated before it is important that | have a
solid modd to reference when developing the IR and code generation.

Read through the aticles in Computer which proved interesting but didn't highlight
anything particularly new.

Also read up on Julian Brown's recent adjustments to his phetacode (the intermediate
representation for his ARMphetamine project) in which he had developed some of the

things | was intending to implement, especidly adding indructions to make the
emulated flag handling more explicit.

23/1/01

Attempted to integrate my interpreter into RedSquirrd.

Removed SWI (Software Interrupt) ‘faking’ which was being used to test sSmple
programs. This is where OS cdls (SWIs) are intercepted by the emulator and smple
commands are imitated rather than emulated, for example OS NewLine is known to
output a new line character to the output stream o this can be done without the need
for complete hardware smulation.

One notable moment was when | firg removed GB’'s CArm cdass for his ARM
interpreter, renamed my CArminterpreter class to CArm and tried to build Red
Squirrel, this generated 4184 erors, a personal best. Note, this was mainly due to
typedef’s and accessor methods which hadn’'t been made use of in my class but had
been used everywhere dse in RS, and were declared in the old CArm header file.
After some struggles to compile the code and a lot of accessor methods having to be
cregted to interface with the Red Squirrd debugging components and remova of the
test wrapping code | had created, the emulator was seen to run. The display changed
to pink which is the first part of the RISC OS POST (Power On Sdf Tedt). Single
sepping will be needed, as wdl as indruction by indruction verification with the
manuas and a return to the smple test interface in order to find the errors. This could
prove time consuming.

Received the ARM3 data sheet from ARM which means that | now have a genuine
reference source as opposed to inferring details from later data sheets and manuals, as
good as this has been. Downloaded severd Java JIT research papers concerning fast
recompilation and some articles from * Computer’ concerning binary trandation.

22/1/01

Before attempting running RISC OS peformed some further testing on the interpreter
by running the divide routine used in the ARMphetamine report as an example, it
worked fine firg time. Borrowed and implemented the interrupt signdling code from
Red Squirrd so that other red squirrd components can sgnd for the ARM processor
to generate an interrupt.

Spent some time examining the assembly generated by MSVC++ to check on the
qudity of code it is generaing before | leave the interpreter. When darting the
interpreter | took the decison to use C++ inlined methods rather than C #define
macros for indruction templaies (to give dronger type-checking and better
progranming style). In particular | wanted to check that it was correctly inlining the
indruction template code since this could lead to massve overheads if not performed
and would have resulted in me having to convert my vaidated functions to macros.

An example of this is where the getFiedd() method has dearly been inlined in this
section of code for decoding the indruction with the * shr’ (shift right) and ' and’
ingructions.

;173 /1 decode instruction type frombits 20-27
;174 switch(getField(currentlnstruction, 20, 27))
;175 {

nov eax, ebx
shr eax, 20 ; 00000014H
and eax, 255 ; 000000ffH

cnp eax, 255 ; 000000ffH
ja $L48016
jmp DWORD PTR $L51516[eax* 4]

$L47308:

In some cases, smple functions were not being inlined as a result of the compiler
making a bad judgement as to when not to sop inlining. Judicious use of the
__forceinline keyword has been used on smal functions to force the compiler to
inline them. Though this has little bearing on the dynamic recompiler, it is important
to give some thought to the interpreter’s performance in order tha later evaduation
using speed comparisonsis asfair as possible.

Interfaced the disassembler to the interpreter so that indtructions executed can be
viewed as assembly rather than hexadecima vaues, necessary for testing anything but
the shortest of programs. This highlighted severd issues with the disassembler,
severd of which have been fixed. Tomorrow | will atempt to run RISC OS and check
for bugsin the interpreter.

21/1/01

Implemented al exceptions and filled in the gaps where I'd left them out previoudy,
this includes interrupt handling. Completed dl the semantics in for the decoding
switch table, including many logic, aithmetic and coprocessor ingtructions. Added
support for adjustments to the TRANS line which affects the MMU’s logicd to
physca trandaion s0 tha supervisor mode indructions can access memory as if it
were being done in user mode.

Implemented rudimentary coprocessor ingtruction support to work with red squirrd’s
coprocessor emulation. Complete coprocessor emulation is not something | fed this
project should delve into for various reasons a) it doesn't add anything interesting to
the dynamic recompilation b) it adds more work to the project without adding any red
functiondity ¢) it is highly under-utilised as a feature of the ARM architecture in
many sysems.

19/1/01
Implemented Single Data Swap indructions for both byte and word, filled in severd
more entries to the switch table and wrote afew more template logic ingtructions.

18/1/01

Completed sngle data transfer ingructions. Implemented block data transfer
indructions. Need to look a Red Squirrd’s fixes for LDM (with S bit set) in the
manuas and other emulators. These fixes were discovered from issues when running
parts of RISC OS which gpparently conflicted with the manuals.

17/1/01

Succesfully ran the firgt program on the interpreter, printing out rows of 1,234 and 5
dars to the debug output. This tested the CMP, ADD, MOV, B ingructions as well as
conditiona execution for the LE (less than or equd to) condition. The next things to
add are sngle and multiple data srandfer indructions and fill in the rest of the switch
table. Now that the basics ae working and | have proven that the fetch execute loop
works | dso want to finish off and tie in the disassembler written previoudy to ad
debugging of longer programs. It should be noted tha dthough it may seem sound
trivid to get this far, many of the complex templates needed for every ingtruction are

now working (even if not yet rigoroudy tested), as wel as the pipdining effects on
prefetching indructions, which is something of a heedache.

The firg run program was quickly followed by a GCD test which worked first time
and additiondly tested the condition codes GT, LT and NE.

Initidl work was done on adding support for most of the sngle data transfer
indructions as wel as templaies for the various permutations of these ingtructions
(Ox40 — Ox6F complete).

16/1/01

Read up on and correctly implemented dl the variaions of accessng regiser 15
depeding on pipelining and access of the PSR, comparing Red Squirrd and the ARM
ARM for intricte implementation detalls, this is extremdy complex and time
consuming. Implemented severd logic and aithmetic indructions incdluding MUL and
MLA as wdl as branch, and inparticular improved the access to and generic methods
for updating the condition flags for indructions which need them. To test progress |
took a smple program to output lines of 1,2,3... asterisk characters to the display and
implemented smple SWI faking (to handle character output and new line). This lead
to the devdopment of the dmple tet wrgoping, the memory inteface being
abstracted within the Arminterpreter class so that program is not inherently reliant on
Red Squirrd’s MEMC dass (which is too complex for initid testing), and some flat-
mode memory with a file loaded to load raw executables into the interpreter. Some
ingructions have been executed but there are issues with the incrementing of the PC
from one ingruction to the next, | suspect rdated to the pipelining effects.

Looking a the ARM ARM for the MUL ingruction (section 358), it seems to state
that if r15 is used as any of the arguments the result is unpredictable. It therefore
seems probable that al checks for whether the PSR should be fetched and the +4
added for pipdining effects if r15 is an argument could be removed, (dso whether rd
== rm in MULS) as it won't ever occur in red world code. In the event that it did the
result could not be cdled inaccurate since it's unpredictable On consulting Graeme
Barnes he seemed to think this was far and dso put paid to my doubts that some
pathological case like the RISC OS POST (Power On Sdf Test) might indeed test
these boundary cases and gave me a copy of his rought research on the POST.
Haven't yet taken account of the affects on PSR flags from the barrd shifter being
used to represent immediate constants — this must not be forgotten.

15/1/01

Met with Graham for the firg meeting of the term. Briefly discussed the scheduling of
the project and the viability of the threaded interpreter working with the intermediate
representation as a satisfactory concluson to the project in the event of difficulties in
completdly the trandation to native code. The thinking being that this is essentidly
the ultimate desired concluson but doesn't redly add anything in terms of issues and
methods to the threaded interpreter except a lot more work. In the meantime | will
continue to follow the project schedule as closdly as possible.

Finished of operand 2 fetching in data processng indructions, sources conflict on the
exact detals of ASR and ROR in cases when for example te shift amount is > 32,
basing it on Red Squirrd.

14/1/01

Finished building switch table of ARM3 ingructions. Started adding the semantics for
them, inparticular the complexities of the data processng indructions where the flag
cdculations and affects on the PC change depending on exactly which registers and/or
immediates are used to specify barrd shifting.

Recealved the ARM ARM from Mark Burton for which I'm very grateful.

13/1/01

Set up the latest source of Red Squirrd to compile and run. Started implementing the
interpreting emulator in Red Squirrd (though sdf contained). Once mature enough
will gart attempting running basic code on it externdly to Red Squirrd to test basic
operation and after that will work at getting RISC OS to boot.

Intial condderations were the decoding of indruction. Decoding on bits 20-27
seemed obvious as a result of the denisty of different bit fiedds which determine the
exact indruction and in many cases severd of its arguments. | briefly looked at
induding the condition code in this lookup but since it's purpose does not vary from
indruction to ingruction, it can be consdered before the ingtruction decoding takes
place.

Started building switch() table of ARM3 ingructions to be decoded usng RedSquirrel
as areference and confirming with the ARM610 datasheet — this took some time.

12/1/01

Asked Mark Burton to send that copy of the ARM ARM.
Latest developments from RS.

Drew up outline of find report, particularly introduction.

20/12/00

Mogt of the last two weeks has been logt to various job interviews which has resulted
in a ridiculous delay in progress with the project. The cause of this delay is notable
since two of the interviews that took place are relevant to the project.

The firdg was a Broadcom, a U.S. based company which has recently purchased
element 14, the reformed verson of Acorn. In the process of my assessment | was
interviewed by Sophie Wilson who played a lead pat in the desgn of the ARM
indruction st and John Redford who wrote the software PC emulator for Acorn
machines. | was dso able to discuss my project with two of their software engineers
working on the suite of tools for their FirePeth processor, and inparticular the progress
they are making in smulating that processor for use by clients in the absence of a
fixed hardware platform.

The second relevant interview was a ARM, taking to their software engineering
department as wdl as a senior R&D engineer from ther tools department with whom
| could discuss my project and their work on modelling ARM processors (athough
demands for accuracy normally prohibits any use of dynamic recompilation).

4/12/00
Finishing touches to the progress report, proof reading, correcting, amagamating
graphics and adding references and footnotes.

3/12/00
Wrote the mgjority of the progress report, diagrams etc.

2/12/00
Made a start on the progress report and got arough list of subjects together.

1/12/00

Read some of the book ‘Introduction to assembly language programming’ to ensure
that I'm not ignoring any crucid problems in my thinking. Issues such as the fact that
most x86 indructions, rather than having a dedindion register and various source
regisers, Smply operate on a dedtination register destroying it's old contents, this will
have to be performed in the dynarec by means of temporary variables to prevent
dedtruction of the emulated ARM regiser’s date. Flag adjustments may be frudtrating
and have issues such as the dready identified carry/borrow issue with ARM SBC and
x86 SBC <eting the flag differently, dso the issue of the overflow flag beng in a
separate byte of the EFLAGS x86 register and so more tricky to manipulate. Choosing
indructions is something ese to consder where there are different uses/costs
asociated with different but amilar/equivdent x86 indructions, such as the dassc
ADD regiger,1 or INC regigter, | suspect gans from this kind of choice will be
negligible and thus not making a decison in the recompiler will be preferable. Since
many x86 indructions can take their operands (or even results) from/to memory, not
being able to dlocate dl ARM registers to x86 ones may not be so disasterous since
they can be accessed directly in the regigter file.

28/11/00

Limited time today so read through some papers from Cambridge which Sara leant to
me on the subject of optimisng compilation, particulaly one by Audander and
Hopkins on ther PL.8 compiler and the choices made for the intermediate
representation, emphasising research on the target architecture and the breakdown to a
‘ampler abstract computer’ in a Smilar way to phetacode. I've gill had no reveations
as to how | can nicely represent the idiosyncracies of machine code in some abstract
language and have no sources other than ARMphetamine which attempt to either.
Also a paper on data flow andyss which seems to confirm the complexities of it and
most interestingly a paper by Mycroft and Norman (of Norcroft compiler fame) about
optimisation which nicdy caegorises different types, debates the rdative methods
and raises the issue of the order in which to perform such optimisations and dedls with
various other problems such as regigter dlocation, intermediate code generation and a
paticular highligh on the converson to linear code of multiple blocks thet end in
unconditional branches.

In my experience most ARM subroutines end with an LDM which restores severd
regigers from memory, induding the PC, which would normdly prevent chaining of
basic blocks (something | wish to do given the atomicity of each recompiled chunk in
light of discussons with Sara), however there will be occurrences of unconditiona
branches and a the very word, inlining such subroutine code into larger chunks is not

impossible.

27/11/00

Met with Sara Kadvda and discussed the rdative merits of different IRs, optimisations
and methods of profiling especialy identifying basic blocks. Her opinions seemed to
agree with mine which was very reassuring. Detals in log book. Also met with
Graham and discussed the format of the forthcoming progress report and the timescale
taking into account the the unanticipated problems with GUI development and my
beief in the smplicity of profiling. Although currently behind schedule, given that no

work is pencilled in for December gpat from the progress report ground should be
able to be made up there without too much difficulty.

26/11/00

Having played more with the GUI | am finding it something of a druggle to get the
GUI working, as dthough Visud C++ does make many things esser it is gill a
massve package and the documentation and usage take some getting used to. | fed |
may have to dlocate severd days to working on this and getting to grips with it if use
of the final product and debugging of the emulation isto be bearable.

In the meantime | have done more research into the decoding of ARM ingructions,
which is something of a mess. Severd other emulatorgdisassemblers have been
dudied and | am progressng with the disassembler (dthough unable to test it until the
GUI is working) to enhance my knowledge and get something practical done. The
more complex it becomes, the more | am convinced that a significant speed up can be
gotten by smply not having to do al the decoding, let done any other optimisations.

Dug up Julian Brown's macros for his run time assembler used for generating x86
machine code directly without a dow classic assambler, being able to use them with
his permisson will save a lot of trouble I'm dso in seach of a decent x86
dissssembler dnce this will be very useful for andysng generated code and
debugging and therée slittle benefit from me writing one mysdlf.

While examining RISC OS Ltd's new rdease of documentation reating to a future
verson of RISC OS that will run on 32bit-PC ARMSs such as Xscale | was interested
to find they noted that the infamous ARM Architecture Reference Manud is avalable
on the ARM developer suite CD which | have toyed with but hadn’t noticed this
before, this document should provide a comprehensve and authoritative reference if
the other sources are ambiguous or unclear.

At the end of the day the disassembler is well underway with the only indructions left
to handle being the co-processor ingructions, single data swap (and the extended BX,
long multiples and hdfword/gned byte data transfers which aren't present on the
ARMG610 anyway). I've dso documented fairly comprehensvely any ARM assembly
features left out of the disassembler. This does need extensve testing, probably
maenudly agangt sample dissssembly from the StrongEd text editor for RISC OS
meachines which should diminate the mgority of the bugs.

23/11/00

With a desre to get this project off the ground and make some progress (and being
crucidly aware that | am fdling behind schedule in hoping to have an interpreting
emulator finished by tomorrow) I've stated work on the reativdy smple task of
building mysdf an ARM disassembler. This could concelvably be taken from another
project but | fed tha it'll be a rdativey graceful dat to the implementation of the
project and by desgning it mysdf will dlow me any flexibility | want. At current
dage | have identified that I'll decode on bits 24-27 of the ingtruction, with secondary
decoding phases for indructions which are not conclusvely decidable on so few bits
eg. Daa Processng and Multiply. I've built a smple GUI usng VC++ and have
darted implementing the smple ingructions to decode such as SWI and the condition
codes. This can conceivably be finished by tomorrow night.

After some discussons from Nel Bradley on the dynarec lig he advises agang an
intermediate representation in a dynarec, rather assembling blocks of information
about each source indruction and emitting native code directly from this leaving

optimisation to the code generated based on optimisation andyss from the source
profiler. This is an interesting idea and could well be more efficient. It doesn't lend
itself quite so wdl to the standard compiler techniques and documentation which is by
and large based around an IR and DAG andyds, and is a more risky technique if | run
into problems as | won't even have an IR and optimisations to show for my efforts.
On the pogtive Sde, the blocks of data about the source might lend themselves better
to athreaded interpreter than an IR in the style used by ARMphetamine.

22/11/00

Anaysad the different ways that the condition code vaues match to the vaues of the
PSR flags for conditiond ingruction execution. Was dismayed to find that as | was
hoping was the case, that the condition code could be thought of as equivdent to a
mesk for the flags was not the case. Rather there are various combinations of flag
settings which match some condition codes, this is not a red problem since the x86
indructions have gmilar condition codes and a function teble from the given
condition code can easly be used to check the more complex combinations of flag
Setings.

20/110/00

Identified the key issues surrounding the interpreting emulation, Specificdly
identifying the fastet ways to decode ARM ingdructions, and the various ways of
storing the ARM flags. Notes made on the subject in log book.

7/11/00

Read most of the chapter 8 and 9 in ‘the dragon book’, concerning IR representations,
code generation and dmple optimisations. Made some notes in the log book
concerning fedlings about the ideas expressed there, which | won't repeat here. The
reading did clarify a lot of the work that I'll have to do. More reading on these
subjects is needed but | feed some decisons could be made soon. One of the things
I’'m concerned about is whether a conditional branch need definitely be the end of a
block of recompiled code (as it is for the ‘basic block’ concept) since in severd cases
andl loops will occur which could give great speed up if the entire loop, including
continue-looping-condition checking were recompiled, whether this is practica is
another matter.

6/11/00

Came across two interesting and related projects, Sleeve and riscose. Seeve being an
ARM indruction interpreter, 26bit and user mode only (ina gmilar gyle to
ARMphetamineg's competability) and more interestingly riscose which is a high leve
implementation of many of the RISC OS SWI cdls and the Shared C Library, the idea
being to be able to execute RISC OS binaries under ARM Linux with a combination
of emulation and high levd code This high levd implementation may prove
interesting/useful if | ever get to the stage of trying to add high level emulation to my
project in the latter stages.

3/11/00

Looked a extended architecture and indruction format of long multitples, branch with
exchange and hdf word data transfers which gppear to be the only new ingruction
types in the v3 and v4T architectures. Added details to my ARM decoding document.
Thumb can certainly be dedt with as a switch to a new decoder when encountered by

the interpreting emulator. Jazelle, dthough highly unlikely to be coped with would be
handed in a dmila manner. This would cdealy be a mgor isue for ddic
recompilation (probably more so than the program/data identification problem) and
may prove to be frugtrating when building an ARM disassembler, I'll have to check if
ARM’s SDK has any gpecid features for the user to intervene to distinguish ARM
and Thumb ingructions.

1/11/00

Trying to edtablish what parts of the vast array of different ARM features should be
implemented or planned for from Furber. Need to make a decison soon and lay out
which features are required, desrable, should be taken into account for possible
extenson and which can be safely ignored.

30/10/00
Experimented with LSL and LSR and studied the ARM 610 data sheet on this subject.

29/10/00

Read through in depth the ARM610 data sheet concerning the decoding of ARM
indructions. I've chosen the ARM610 a this sage since it's v3 of the ARM
architecture which has the 32 bit PC of laler ARMs but without the extra (and
irrdlevant to dynarec issues) complexity of 64bit Multiplies, Thumb indruction s, 5
dage pipdine etc. which chaacterise the more complex but very popular
ARMT7TDMI core, though these will be consdered. Put together a sheet on the
encoding of each type of indruction and the meaning of the internd bit flags. This is
one of the key things to be done before the emulation can proceed. This needs to be
findised with a look a the later ARMs indruction sets to check for any problems
which may arise if | don't plan for extensons and try and add them later, such as the
BLX which jump’'s to Thumb code, use of the previoudy deprecated NV condition
code and other such novelties The other main thing to be anaysed on the ARM is the
idiosyncracies of the bard shifter which athough initidly looks smple has hidden
unexpected features affecting the condition flags amongst other things. Both these
things need to be looked a in depth and documented (sufficiently to dart an
interpreted ARM emulator) tomorrow.

27/10/00

Ingalled evauation copy of the ARM developer suite, particularly to look & the
debugger functions of ARM’s ARMulaor program, an accurate emulator for
debugging purposes. Also confirmed that the ARM610 datasheet (and presumably
later data sheets) contain specific information about ARM machine code ingtruction
formats which will be needed for decoding. | need to take a look at later ARMs and
look a which verson | will support. Getting directly on with the project, priorities
will be to look a the idiosyncracies and dde effects of the barrd shift (gnce this is
known to be compex) and the methods that can be used for setting the x86 flags and
gmilaritiesto ARM flags.

26/10/00

Read dhortish section on IRs in Advanced Compiler Desgn & Implementation by
Seven Muchnick. Discusses high, medium and low levd IRs and the purposes of
each, it was dso some comfort to read; ‘Intermediate-language desgn is largey an
at, not a science.” i.e. much of the design is down to persond preference and there are

no hard and fagt rules as long as the IR is wdl built for it's purpose. From the
decriptions of different IRs, any kind of dynamic recompiler will have a low Evd IR
gnce there is litle or no knowledge about source program functiondity. This low
level approach is described as often having a one to one mapping of ingdructions to the
target, or perhgps expanding IR indructions into fixed code sequences, much as
anticipated. There is a description of Extended Backus-Naur Form (XBNF) at the
front of the book, used in the IR section, which | recognised in this context as being
gdmilar to ARMphetaminés IR description and is likdy the way I'll conceptudly
write my IR even if the Storage format is a binary representation for fast access and
look up (parsing strings istoo dow an option). More reading is needed on IRs.

25/10/00
Had a flick through some of the bascs of the Intd Pentium Il Basic Architecture
document about memory and the background to segmented memory and the esder
protected memory verson. Had some interesting detals about the layout of the
EFLAGS regiger and the indructions that can be used to modify the PSR flags. As
described from ARMphetamine, the x86 has Sgn flag (Negative), Zero flag, Cary
flag, and Oveflow flag anongst others, which the ARM uses. The rules by which
these are st for individud ingructions are likdy to vary from the ARM, and | know
for a fact that the ARM’s bizarre way of Carrying from subtractions is different. The
doc confirms that only the Carry flag can be manipulated directly by a srangdy large
number of ingructions (STC, CLC, CMC, BT, BTS, BTR, BTC) whilst the other
flags are much less adjustable. Adjustments to other flags may want to be emulated in
software rather than using native x86 flags, depending on two factors:

a) gmilaities between ARM and x86 flag setting rules

b) ease of access to x86 flags both to read and write
This needs to be sudied in detall but due to the limited number of ingructions on the
ARM, shouldn’t take too long.
| took a quick look a parts of the source to 1964, a Nintendo 64 (source MIPS
R4300i) dynamic recompiling emulator for x86 computers running Windows. Mot of
the code seems to be preassembled (and in fact literdly hex vaues) of covers which
are used for trandation of MIPS source and is extremely messy and would be hard to
debug.
Also reed mogt of chepter 4 and 5 of Art of Assembly language which is getting
increedngly less ussful. | may try reading later chapters in the hope that it will
provide some indghts to x86 without al the rhetoric though the Intd manuals seem
more readable than | was expecting.

24/10/00

Thinking some more about the IR of ARMphetamine I'm concerned about how |
might get the extra features of the processor, necessry for an emulator of a red
machine, into the IR. | suppose it would be possble but could leave the IR a little
messy with many explicit indructions to modify the date of the emulated machine
I'll have to look a ARMphetamin€'s appendix on the IR and consder how NB’'s
dynarecs do the IR for use with red systems before deciding further.

23/10/00

| took another look a some of the documents on the Sun webste about techniques
used to speed up Java technology, in particular previous JT and now the Hotspot
compiler. The firg thing | established is that the older JT JVMs (which have been

available for at least 2 years) are relatively smple bascdly the JT interprets the byte
code until it comes to a method cal when it then trandates the method to native code
and executes it for every method. There is no anadyss of how many times that method
or aress indde tha method are run, so trandating and running native code is often
dower than smply interpreting byte code due to the overheads of trandating which
are never recouped by multiple calls to the native code. It dso appears that very little
optimisation is done on the native code generated (hence my description of trandation
raher than recompilation). ARM code doesn't have explicit method cdls like Java
byte code does, though this feature could be applied to every branch ingruction
though the idea of no code analysis seems foolish. The other option open to JT VMs
was to recompile the entire program & run time which is not very useful for Javas
dynamic loading classes functiondity (and aso dradticdly dows down the class
loading), this is more a datic trandator rather than dynamic recompiler and not
suitable for emulation.

Hotspot on the other hand is a far more advanced recompiling VM. It darts off
interpreting and anadyses the code for information used in recompiling it aso appears
not to operate just on methods but on blocks of code that are performance ‘hot spots'.
The emphasis gppears to be on only recompiling the criticad much executed aress of
the program but doing a lot of performance on them in order to be able to peform
more advanced optimisations and not waste time recompiling code unnecessarily.
Hotspot dso uses ‘dynamic deoptimisation’ in order to ded with casses loading
which may inherit from and overwrite previoudy recompiled functions (the cdosest
Java comes to the sdf-modifying code problem) by dumping those recompiled
versons. The class loader of course knows which recompiled blocks are being
overwritten, monitoring which parts of recompiled program memory ae ovenwritten
in ARM code will not be so trivid.

Some of the‘classic’ optimisations done in Hotspot are:

Method inlining — It may be possble to detect stat and end of ample functions by
vaidions of the sarting STM and finishing LDM that save and restore respectively
the PC. | suspect this will prove quite complex in practice with interaction between
severd functions though identifying these could be useful for other optimisations.

Dead code elimination — eliminating tests and routines that can never be executed.

Loop invariant hoising — taking invariants from indde the loop out of it to prevent
profittess recdculation. For the mgority of immediae vaues there is little time
pendty on an ARM as they are encoded into the ingtruction. It may be possible to take
these outside the loop on the x86 in order to get Smilar benefits.

Common subexpresson dimination — recognising expressons caculated previoudy
and reusng the caculated vaue. This would probably be quite complex to recognise
so may well to be avoided.

Congtant propagation — is this the same as ‘copy propagation’ in the dragon book? If
S0 it recognises use of duplicate variables so that the assgnment of one could be
eliminated, | suspect that this would be very nasty to recognise.

Having had a quick look at the Dragon book’s (Compilers by Aho, Sethi, Ullman)
section on optimisation it is gpparent that some of these methods are not suitable for
high-speed compilation on low-level code though others might prove otherwise. It is
important to remember that much of this code will dready have been through an
optimisng compiler axd so may foolish programmer-induced-redundancies
removed. The trick will be for my recompiler not to introduce redundancies into the
recompiled code, it is possble that much optimisation will be practicd on the find
target code as opposed to the source or intermediate layers.

22/10/00

After reading the section in Furber about the Thumb indruction st it seems tha
reather than being a coprocessor, Thumb is actudly just a 16 bit representation of a
subset of the ARM indruction s, dmogt dl Thumb indructions have ARM
equivdents (with the occasona required exception on pl93). ARM processors
supporting Thumb have a decompressor that when in Thumb mode just looks up the
rdevant ARM indruction for the current Thumb representation before executing it.
This would mean that in my dynarec Thumb is just a problem for the decoder and
would not ggnificantly dter the output x86 and perhgps not even the IR. Other
reading suggests Jazelle implemented in a smilar way and is not a coprocessor either,
though due to it's recent addition and use in specific applications | do not expect to
pay much more than lip service to Jezdle.

At great length read Julian Brown's dissartation for ARMphetamine making severd
pages of handwritten notes. His gpproach of splitting functiondity of complex
indructions (i.e. conditionally executed, meking use of bard dhifting and the
logic/arithmetic operation) into separate intermediate representation (IR) indructions
which are then amply trandated to equivdent x86 indructions is an intereting one
and a good candidate for my project. He apparently suffered problems with the barrel
shifting complications due to his IR not being designed to cope but did get it working.
There are many aspects of interesting work done as wel as detailing many limitations
and things I'd like to explore such as which ARM flags to emulate in native x86 flags
and which not to, dso his suggestion of predicate conditiond execution doing more
data flow andyss to see what's required rather than just cdculating al flags for a
conditiond ingruction. Other things were confirmed to me such as the easy way out
of dropping back to the interpreter when direct PC manipulation is performed.

The IR is problematic since if | wish to make my project a least a little retargetable
(as yet I'm undecided on this) there is no clear IR which can efficiently be transcribed
into various target processors. A very interesting paper which highlights severd
things | need to congder paticularly if 1 am to take my project further to emulate a
full system, ARMphetamine was never redly designed to do this.

I’ve read an introduction to x86 sent to the dynarec.com mailing list by Neil Bradley
(NB) which gave some indght into how things work. Despite the behemoth that is the
Pentium indruction set | think the complexity can be avoided and I'm not quite s0
scared of the whole thing. Art of Assembly language is proving a little too verbose in
it's explanation and is for people wholly new to assembly languages, | need to find a
new resource to learn more detail from.

Reading some past discussons from the dynarec list (that Victor had archived away) |
came across an old debate on register dlocation routines for dynarecs. NB particularly
favours ddicdly dlocating emulated registers to native ones in order that you can
then jump to the middle of a recompiled block (at an ingtruction boundary) and know
wha's going on. As Julian Brown pointed out, this obvioudy isn't practicd for
emulating processors such as the ARM because of the very large number of emulated
registers relative to the native regs. NB debated that you can just store a small subset
of them in the target registers and do everything dse to/from RAM. I'm unsure if that
would be practicad knowing the complexity of some ARM operations and the fact that
there are sO many true generd purpose registers. This ability to re-enter cached blocks
and datic/dynamicly dlocated regigers is farly fundamentd and needs thinking
about.

21/10/00

According to GB, “[Endianess] is controlled by the ‘control register' - register 1
coprocessor #15. Bit 7 says whether the memory architecture is little or big endian. As
such big/little endianness is part of the MMU rather than the processor. | got this from
the am7500 data manua page 4-15. On the back of this I’ve done some more
reading in Furber about coprocessors on ARMS. It turns out that al the extensons to
the indruction sat such as FP, and | believe Thumb and Jazelle too are implemented
as coprocessors on the ARM chip (dthough can dso be on the main board) through a
relaively standardised interface. Furthermore, if a coprocessor isn't present and an
indruction for it is executed, the undefined indruction trap alows that indruction to
be trangparently dthough more dowly emulated in software (as was avalable on
RISC OS as the FPEmulator). This is good news in that if the coprocessor interface is
implemented in my project | won't have to worry about these extra indruction sets at
al except as more indructions in the common set. There is a system control processor
that seems to have some control over sandard system features such as the cache in an
ARM3, more research will be needed on coprocessors and how to alow extension.

Did a little resource harvesting, managed to get some docs on big endian,
FPEmulator, ARMulator, <art-up configuration, fixed point aithmeticc, Thumb
indruction set introduction and many more from
http:/AMnww.arm.comv/sitearchitek/armwww.nsd/html/documentation?OpenDocument

and the odd doc from comp.sys.arm

Hicked through doc on ARM'’s recently announced Jazelle technology to provide a
Java Byte code executing coprocessor. This is paticularly interesting as it shows
where ARM fed the boundaries between a hardware coprocessor and software
emulation in ARM code (for more complex ingructions, FP, new, divide ec) is
drawvn when trying to execute CISC-like Java Byte code on a RISC. ARM clam a
competitive performance with a JT VM (Smilar to dynarec) but without the memory
and compiling time overheads.

To do some directly relevant work, | read to the end of Chapter 3 of ‘The Art of
Assmbly Language which gave me some indght into the reative mess of diversty
of x86 asm but the fact that the basics are just that, basic. I'm a long way from being
an assembly language programmer but it's a start.

20/10/00

After more discussons with GB it's dealy edtablished that I'm going to have
difficulty with interrupts, in Red Squirrd a present interrupts are checked for after
every ingdruction. This leve of accuracy may well be unnecessary though could prove
otherwise. The problem is as GB pointed out that in the case of the code:

.1 oop
movS r0, #1
bNE | oop

an infinite loop is created which could be broken only by an interrupt (such as a reset)
though if this were compiled to x86 code (which | still haven't learnt much about) it
would cause an infinite loop and not be stopped by an emulated interrupted. To cut it
ghort, dl loops will have to periodicaly check for interrupts, ether by doing this in
the recompiled x86 code (this is my preferred option) or by dropping back to the
fetch- execute-decode emulation to check. | should redly look a how ARMphetamine
does this though dnce it's an incomplete emulation this may not be handled. This
must be a problem for other dynarecs for other systems though.

GB ds0 highlighted the problems for a dynarec of being able to dter the PC directly
on the ARM with ingtructions such as.

MOV PC, r14 ; the code can do anything to rl14

LDM A r13!, {pc} ; again code can and does nodify the stack
before returning

LDR pc, [r1l, rO LSL #2] ; branch to r1[r0]

ADD pc, pc, rO;

these may result in having to drop back to the fetch-decode-execute emulator before
checking for dready recompiled code for the appropriate new value of the PC. |
expect many of these problems will be clarified once I've had a good look at other
dynarecs, specificdly ARMphetamine and better underdand the limits of what
previous dynarecs have done with such things as jump tables etc.

19/10/00

After some discusson with Graeme Banes (GB), author of Red Squirrd, I've
established that ‘If any application wants to be fully compatible with every acorn, it
must be little-endian’ and hence the potentid endian switching problem isn't so much
of a concern. I'm adso pretty sure, though this is unconfirmed, that dthough the ARM
can operate in both modes it’s hard wired for each system it’s used in.

18/10/00

Finished specification document with details of the stages in designing a dyanrec as |
see it now. Added a lot of detall as to the problems with incredible varigtions in ARM
processors and what | hope to implement. Also details of follow up ideas for features
to a working dynarec which would be novel and useful, though may never get
anywhere near implementation. Timetable has been sat out quite consarvaively with
little spare time a dl, though the month off for Chrismas may provide much needed
room for manoeuvre. Now this document is finished | fed | must get down to learning
the basic skills | need for the project, and in particular, x86 asm.

Read my way up to date on old emails from the dynarec.com mailing list (over 400),
came across an interesting discusson that it may be faster on x86 when emulating an
add or subtract to test bits in the AH register directly than to try and force them nto
the native flags and use them from there. Also note the problem that the ARM and
x86 use opposing carry systems for subtract ingtructions.

17/10/00

Wrote background section of gpecification in more detall outlining briefly what
dynamic recompilation is. Read two more chapters of Furber’s book detailing the
organization and differences between 3 and 5 dage pipdining versons of the ARM
core as wdl as the indruction set section where I'm hoping to find detalls of
expandons to the ARM processor which need conddering in the desgn even if not
implemented.

I’ve ordered the ARM software development kit evauation verson which contains a
veson of ARM’s own ‘ARMulaor emulator for debugging code Although
designed for very different reasons from a dynamic recompiler (absolute perfection
and versatility for debugging ARM software as opposed to raw performance) it may
provide some useful ingghts.

I'm dightly concerned that | ill don't know much about x86 assembly and haven't
read al the docs avalable to me about dynarecs. | fed my priority must now be to

urgently read directly on the subject, paticularly the ARMphetamine dissertation and
x86 asm tutorid before getting the specification tied down for the rapidly approaching
deadline for it.

16/10/00
Read through first three chapters of Steve Furber's ARM system-on-chip architecture,
deding with background to development of ARM processor (relative to other RISCs
and CISCs), an overview of the ARM platform’s mgor features, not branch-delay
pipdining eic. and an introduction to ARM assembly programming which refreshed
my mind on saverd of the key festures of ARM which may cause me problems if not
anticipated, such as.

?? the powerful and flexible bard-roller on the second operand for most

ingructions.

?? the high vighility of the PC and PSR flags

?? pipdining effects on PC leading to unpredictable results.
Also contains some interesting dtatistics (p21) about frequency of use of various types
of ingructions on an ARM processor in a print preview program and can be expected
to be broadly smilar.

12/10/00

Read through paper ‘Binary Trandation: Static, Dynamic, Retargetable? by
Cifuentes and Mdhorta, largely concerned with academic projects and running legecy
software on modern systems partcularly with retargetable runtime environments.
Contains some smple diagrams on vaious binary trandators as well as discusson of
the merits of the various methods.

Having been subscribed to an emall lig for a dynarec.com (for the purpose of
discussng dynamic recompilers) snce early June, | spent some time reading over 600
previous emails to glean information. The group have been working towards building
a dynamic recompiler for the 68k->x86 with one of the leading members having
previoudy worked on a dynarec for the Z80->x86. Although there is quite a lot of
noise on the group, it made me more aware of some of the various approaches people
are taking with dynarecs, such as intermediate representations, how to store decoded
indruction information etc. there is some way to go but this may prove a ussful
resource for brain storming and x86 assembly problems if questions are phrased in the
correct way.

11/10/00
The ‘Generator — A Sega Genesis Emulator’ project by James Ponder is of interest as
it is the most recent previous emulation project undertaken a Warwick in 1997, and
adso examines to some extent the idea of dynamic recompilation of a source 68000
processor. Severa points of interest:
?? The document has some interesting points about building an interpreting
emulators look up table of functions mechanicdly rather than by hand to avoid
the inevitable human erors in writing 65536 functions Unfortunaidy a
complete look up table is obvioudy not feasble for the 32 bit ingtruction
ARM.
?? The idea of usng the decode table that builds opcode functions to aso
generate information for the disassembler isagood one.

?? On the subject of dynarecs some discusson is given to block identification,
James is of the opinion that blocks must end when the PC is modified. |
believe this may not be the case but need to investigate further. There is dso
discusson of dimingion of redundat flag cadculation remova which is
probably irrdevant on an ARM dynarec due to the PSR flags being set
conditionaly for every indruction.

?? Interesting idea of having two versons of each opcode function in the
interpretive emulator, one which cdculates dl flags and one which caculates
no flags as this commonly occurs to save on memory rather than do every
permutation of flag caculation. By detecting blocks and gpplying this ether/or
flag cdculation to the block, afaster interpretive emulator has been produced.

?? Checks for two ingruction loops which are waiting for interrupts, as this is
common and wades time, then immediady generaies the interrupt being
waited for.

| spent some time collecting information on fidds of interes to which dynamic
recompilation may be relevant. To this end I've downloaded a copy of the source
code to Sun's HotSpot Java Virtuad Machine (JVM) which is reknowned as a high
speed ‘just-intime (JT) compiling VM. | dso downloaded the first and second
edition VM specification to darify anything not found in the documentation. I've
collected severd links to other university research groups and projects concerned with
JT VMs in a hope that they will help diminate festures of VM JTs that aen't
suiteble for a dynarec for a red processor leaving me with the few, if any features
which are useful.

| took a look a Transmeta’'s webpage concerning their Crusoe processor which
appears to use a amilar technique to dynarecs a a very low level to emulate an x86
processor on a ‘Vey Long Ingruction Word -type processor. Unfortunately
Transmeta seem paticularly tight lipped about ther work due to the potentid
commercid vaue of it.

10/10/00

My firg meeting with Graham Martin (GM) and have given him a basc firg draft of
the project specification for him to comment on as it has to be submitted by the
20/10/00. He suggested that planning the timescde will prove difficult which was
something | had aready found and will need some thought. We agreed that it seems
prudent that idess of aso working on a highly optimised interpreted 6502 emulator in
ARM assembly whilst taking on such an adventurous project & a dynarec will not be
a good idea but can certainly be consgdered once the dynarec is wdl underway. We
briefly discussed whether it is advissble for me to read Julian Brown's
‘ARMphetamineg project documentation since it's a very smilar title to mine and
decided that in the interests of not ‘reinventing the whed’, and s0 long as Julian is
given adequate credit for any references to his work, this won't be a problem. It's aso
probably a good idea for me to tak to a compiler expert about fast compilation
techniques sooner rather than later, Sara Kavaa seems the obvious person. For our
next megting I'm planning to have read up on the available dynarec documentation
and previous Smilar projects and to have gained some experience of working with
Intel x86 assembly language.

9/10/00
Set up Acorn RiscPC and indalled GCC compiler and text editor for writing test
prograns so | can now write test source programs in C and ARM assembly.

Downloaded ArmSl, a free piece of software which acts as a hardware identifier and
benchmark speed tester for Acorn machines (circa 1993). I've written a badc firs
draft specification which is more a brain storming document than anything dse and
lacking in severd aress, but will give me something to work from as | learn more
about dynamic recompilers (dynarecs).

Previousto this project

Previous to gating on the project | know a little about programming in ARM3
assembly in User mode using the ARM BASIC assembler on a RISC OS machine and
dso usng the aam() function with C++ in the GCC cross-compiler targetting the
Psion Series 5.

| have little knowledge of supervisor and other modes and the more specific
architecture such as SWI handlers, exception handling and will need to explore the
use of extended ARM architecture, FPUs, Thumb instruction set etc.

| have some experience of C and C++ though most of my Object-oriented
programming has been done in Java 0 I'll need to brush up on the C++ way of doing
things such as templates if needed. Although | have used Visud C++ b briefly build
andl utilities | know very little about writing GUI software in Windows though have
written GUIs for EPOC, RISC OS and Java.

As far as emulatiion experience goes, as | goproach this project it is a the end of a
year-long devdopment of an interpretive Nintendo Gameboy emulator for the Psion
Series 5, written entirdy in C++.

| know little if anything about x86 assembly language, other than that it's a bit of a
mess (relative to ARM assembly).

