Manchester Baby Simulator
User Guide

By David Sharp
The Universty of Wawick
11" January 2001

Freddie Williams and Tom Kilburn in front of the Baby or one of it's close descendants.

Historical background

The Manchester Baby (dso known as the Smdl Scde Expeaimentd Machine) was the
fird working stored-program computer. That is a computer which stores and executes its
program from an eectronic Sorage device rather than for example reading it from a
punched tape. It was built a the Universty of Manchester by Tom Kilburn, Freddie
Williams and Geoff Toatill, successfully running itsfirg program on June 21t 1948.

All three of the team had previoudy worked with radar technology a the
Tdecommunications Research Edtablishment (TRE) in Madvern and this had led the team
to working with cathode ray tubes (CRT). Williams had vidted the ENIAC project a the
Univergty of Pennsylvania in 1946 dso reading the EDVAC report. He took away the
stored-program concept as well as the need for a large hign-gpeed dectronic Storage
device, for which he saw CRTs as a prime candidete.

The primary purpose of the Baby was to tet the ideas of Williams and Kilburn of usng a
CRT as a data Storage device for a computer. Although they could store data on aCRT
for long periods of time, this wasn't evidence of its suitability for a computer where the
data was congantly changing a high speed and hence they had to build a computer to test
it. To this end, Kilburn desgned, “the samdlest computer which was a true computer (that
is astored program computer) which [he] could devise™™.

The Baby was built incrementdly with many new festures being added after June 1948,
which have somewha muddied the waters of higory as to exactly the origind fedtures.
The Baby led to the devdopment of the intermediary verson of the Mancheser Mak 1,
the find Mancheter Mak 1 and the Fearanti Mak 1 computers. Patents filed by
Williams and Kilburn led to what became known as the ‘Williams Tube which was
licensed by IBM for their 700 series in the early 1950s Later innovations by the team
(who were soon joined by others) induded adding an index register and then a secondary
dore in a magnetic drum. However it was after that event on 21% June 1948, as Williams

|ater recalled that, “nothing was ever the same again” 2.

Introduction to the Baby’s hardware

The Baby congged of three cathode-ray-tube stores; the control, the accumulator and the
gore, only one of which was digolayed a any one time on the digolay monitor. The store
is made up of 32 rows (lines), each of 32 hits notably digplayed with the leest dgnificant
bit on the left. The dore is akin to what we might think of as memory and is accessed by
line number.

The control contains two vaues, the control ingruction (Cl) and the present indruction
(P). The ocontral indruction contans the line number of the indruction executed
previoudy. The present indruction contans the line representing the indruction

! Kilburn, Tom, “From Cathode Ray Tube to Ferranti Mark 1", The Bulletin of the Computer Conservation
Society, Volume 1, Number 2, Autumn 1990.

2 Campbell-Kelly, Martin and Aspray, William, “Computer — A history of the information machine”,
BasicsBook, 1996, p.100.

currently being executed. It is important to note thet the present indruction is ‘trangent’
and only exigs (and hence is only displayed) when the machine is running. The control
indruction and present indruction (when in exigence) are repegied on every line of the
display.

The accumulator contains only one vaue, the accumulaor itsdf which is the location for
the result of aithmetic indructions in a dmilar way to the accumulator on a moden
Mi Croprocessor.

A dore line contains 32 bits but only some of those are usad. Bits 0-4 represent the
opeand line i.e the number of the line thet the indruction will operate on when executed.
Bits 13-15 represent the function number (what we would know as the indruction

opcode).

The avalable ingtructions were asfollows;

Function Number Modern name | Operdion

0 JMP Copy content of the specified line into the CI

1 JRP Add the content of the speaified line into the CI

2 LDN Copy the content of the specified ling, negated,
into the accumulator.

3 STO Copy the content of the accumulator to the
Specified Soreline.

4 B Subtract the content of the specified line from the
accumuleor.

5 B Exactly the same asfor function number 4.

6 CMP If the accumulator islessthan O increment the Cl.

7 STP Halt the Baby and light the *stop lamp’.

How to use

A smulaion of the Baby would not be complete (and sadly many ae not) without
gmulaing the switch pands that were used to program the machine The interface
described initidly in this user guide dearly has no historica bass and is present o that
the usr can quickly and essly use and program the dmulator. The smulaion of the
‘awitch pand’ section later in this guide is the redly interesing part of the smulaion and
gives the Baby its character. This user guide describes how to load and run programs and
how to use the switch pand. If any extra help is needed, brief todl tips will pop up when
the mouse pointer is over afesature,

Getting Started
The program has been written to run on Javav1.2 or later. Run the program by entering

j ava Baby

at the command line The digolay window will appear, as shown bdow in Fgure 1. A
default program will be loaded automaticaly, see the end of the manud for detals of
other programs.

Eg’% Baby Simulator

File View Help

| 531ps 75.8% 0.75 | | Step || Run || Stop |

Figure 1: Picture of the ssimulator’ s display window

Loading a program

Higoricdly programs were entered into the Baby's dore (memory) via a ‘typewriter’,
dthough this functiondity is provided (see section ‘Typewriter’) there are eeser ways to
load programs on the smulator. Programs are available in two formats:

Asembly — a moderndyle assambly language equivdent to the machine indructions of
the baby, filename extenson ‘.aan’. Sngle line comments are dlowed prefixed by a
smi-colon.

Snapshot — arepresentation of each bit of the Baby's store.

To load a program into the Baby, dick on the ‘Fl€é menu and sdect the ‘Load
Sgpshot/assambly’ item. A file sdection window will open and you should sdect an
as=mbly file (.aam) or sngpshot (.sp) file provided and dick ‘Open’. The file type will
be automaticaly detected and the program loaded into the display.

See the section * Programs provided for alist of programsfor the Baby.

Saving a program

The date of the Sore can be saved to a sngpshot or assembly file a any time by opening
the ‘Ale menu and HHecting the ‘Save sngpshot’ or ‘Save assembly’ menu item. You
can then enter afilename and sdect * Save' to save the Sate or assembly.

Running the program

For authenticity programs should be run usng the switch pand (see section ‘Switch
Pand’) but for quick demondration purposes, the buttons a the top of the digplay
window, ‘Step’, ‘Run’ and * Stop’ can be used to control the Baby.

‘Sep’ increments the control ingtruction, reads the line of the store denoted by the vaue
of the control ingtruction and executes thet ingruction.

‘Run’ repeatedly performsthe same as‘ Step'.

‘Stop’ hdts the running machine.

Unless dopped by the user, the Baby will kegp on executing indructions until a STP
ingruction (function number 7) is executed.

Note, running the Baby simulation is very intensive and it is not recommended that you
attempt to multitask too many other applications as it may affect performance of the
display update.

Viewing the different CRTs

Only one of the three cathode-ray-tube stores could be displayed on the display monitor
(the grid of green dots on a black background) a any one time, you can sdect which one
should be displayed by choosng ‘Store, ‘Contra’ or ‘Accumulator’ from the ‘View’
menu.

Stop lamp

To the Ieft of the digolay monitor is the Stop lamp. When a STP indruction is executed,
the Baby stops executing indructions (so that the results of the cdculaion can be reed off
the display) and the stop lamp islit.

No more ingructions can be executed until the sop lamp has been extinguished. To clear
the stop lamp, Smply press the KC button on the switch pand (see later for detals) or
load ancther program.

Speed and timing

At the bottom of the dislay window is some information about the speed of the
dmulaion. The red Baby ran & around 700 indructions per second, the number of
ingructions executed per second on the smulation is labded as ‘fps (frames per second).
The percentage speed of the red Baby that the smulator achieves is next to tha (i.e
100% would mean the smulator is running a the correct speed, 50% would mean it's
running a hdf speed). To the right of this is the number of seconds of smulated time thet
have dgpsed, to reset thisto zero dick onit.

The amulator atempts to adjust its speed so that it runs a around 100% speed though
this is not possble to do perfectly because of the sporadic and unpredictable variations in
Processor usage.

Disassembling the store

To hdp understand the program and data in the dtore (reading binary in the reverse order
to that which you're usad to is not essy!) a disasssambly feaiure is provided. To view a
dissssambly of the dsore to the modern assembly representation, sdect ‘Disassembler’
from the *View' menu.

The disassembly window should be displayed; a the top are te vaues of the Cl, Pl and
accumulator followed by every line of the store. A line might be:

12 SUB 23 ; =202540951

This means tha the indruction & line 12 was to ‘subtract the vdue a line 23 from the
accumulator. It dso means thet if line 12 were to be loaded into the accumulator it would
have the vaue 202540951.

The information in the dissssembly displayed can be updated from the dore by dicking
the ‘Load from dor€ button a the top of the dissssembler window. The dtered
dissssembly can then be saved back to the gtore by dlicking the ‘Save to tore button.
This provides a smple Integrated Development Environment.

In disassambling the disassembler atempts to guess whether each line is program or data
and will dissssamble data to the assembler's pseudo-indruction, ‘NUM’, so that the
correct vaue is restored to the store when it is updated. For programs which make use of
the surplus bits in an indruction line for grgphicd purposes, this may not work correctly
and will result in them being disassembled as data rather than ingtructions.

Switch Panel
To digplay the switch pand, sdlect the * Switch Pand’ item from the *View’ menu.

Note: For realistic layout of the display, the display window should be positioned directly
above the switch pand. A screen resolution of 1280 x 1024 pixels (or greater) has been

found to be required to display the windows in this configuration.

Typewriter

At the top of the pand is the typewriter, this condsts of 40 marooncoloured buttons,
numbered O to 39. These are usd to affect the individua bits of a line in the gore. Only
buttons 0-31 are actudly connected.

Staticisor
This is made up of the L-daicisor or Line switches are the 5 switches labeled 0 to 4.

Thee ae usad to sdect a given line number. There is dso the Fdaticisor or Function
switches which are labeled 13 to 15. These are used to sdlect a given function number.

The find pat of the daidsor is the auttomatic/manua sdection switch labded ‘STAT'.
If automatic is sdlected (the switdch is down) then indructions are taken from the sore and

executed. If manua is sdected (the switch is up) then the indruction encoded by the

function number of the F-daicisor switches is executed, acting on the line encoded in the
L-daticisor switches.

For example, when the switches are st up as shown in figure 2, the Baby will be set up
ready to execute the ingruction STO 11 (function number 3).

4

co®oR

14 15 STAT MAN
*\r

- & o

Figure 2: Example of setting up the staticisor switches.

Monitor Selector

The three red buttons labded ‘'C’, ‘A’ and ‘S0’ are the monitor sdect switches That is S
ubscript-zero, representing store zero with the intention of multiple stores being added
later. Clicking on the sdected switch digolays the gppropriaie CRT-gore on the display
monitor.

CS (Completion Signal) Switch

This is the ‘completion dgnd’ switch (later known as the ‘prepulsg) where the sgnd
which dats a new indruction was thought of as completing the previous indruction.
When switched down the Baby repestedly executes indructions, from either the sore or
from the encoded daticisor switches (depending on whether the daticisor is in automatic
or manua mode). Hicking this switch to down is the equivdent of pressing the ‘Run’
button in the ample modern user interface (and in fact pressng ‘Run’ makes this switch
flick down) and flicking it to up, the same asthe * Stop’ button.

KC (Key Completion) Switch

This is dfectivdly a sngle-step key and generates a sngle prepulse to execute a sngle
ingruction. Which indruction is run depends on the daticisor automatic/manud switch in
the same way as the CS switch did. Hicking this switch down is equivdent to pressng
the ‘Step’ button in the modern user interface. The KC switch will clear the Stop lamp if
it islit (this was the only way to res it).

Clearing Keys

There are saverd keys that are used to clear different parts of the sorage. However, some
of the switches were not connected in the origingl Baby:

KLC — dearsthe line specified in the L-daticisor switches.

KSC —clearsthe sore.

KAC — dears the accumulator.

KCC — dearsthe contral, actudly dearsthe CI, Pl and accumuletor.

KBC, KEC and KMC are dl unconnected and were present for fegtures to be added later.

Erase/Write Switch
This switch sdects the afect tha the typewriter should have on the sore when its keys

are pressed. If the switch is flicked up (to erase) then when a typewriter key is pressed,
the corresponding bit in the line denoted by the L-daticisor is cleared to 0. On the other

hand if thiswere st to write then the corresponding bit would be set to 1.

Programs provided

diffeqt.aam Magnus Olsson’ s grgph plotter for the solution to adifference
equation.

flash.aam By Ken Turner, one of the replica building team.

hcf.aam Highest Common Fador by Geoff Toatill. The two numbers are
3142 and 2178, and they are co-prime.

hfr989.aam Tom Kilburn's Highest Common factor for 989. Answer is43.
(Thisisloaded as default when the Smulator is Sarted.)

intciv.snp Brendan Campbdl’ sinteger divison, UK schools prizewinning
competition entry.

longdiv2.sp Turing'slong divison.

medclock.snp John Dean€' s Mediaevd clock, displays the hour as the number of
zeroes counted from the left in location 30. The fraction of the
hour is displayed in location 31 where each O from the left
indicates 1/32 hour (about 2 minutes).

nightmaresnp “Tom Kilburn's nightmare’, alarge baby chasng Tom Kilburn ad
infinitum, a competition entry, author unknown.

noodetimer.snp Y asuaki Watanabe s 3 minute noodle timer, the competition
winner.

primegen.asm Bas Wijnen's prime number generator, when the program stops,
press KC to skip the stop and then re-run to get the next prime. A
competition runner up.

dide9.ap Thefirg "modern” program written for the SSEM, by Keith Wood,
one of the replica building team.

virpet.asm Virtud Pet by Achut Reddy, a competition entry. See virpet.txt for

details of operation.

