

A Technic al Introduction

To Programming
The Baby Computer

Creating and Modifying Programs for the Baby Computer
Using the PC -based ñBaby Simulatorò

Fig. 1 - Photo of the real Baby control panel, as used in the latest PC-based Baby Simulator

Version 4.0 (February 2014) Page 2 of 35 Author: NC, based on original work by JT.

Who this guide is for 3

Setting the scene 3

Introducing the Baby simulator 4

Installing the simulator 4

First steps using the simulator 5

Introducing the Disassembler interface 6

Introducing the Assembler instructions 8

Gettin g more familiar with the Disassembler 11

Adding numbers together 13

Preparing to type in and run a program on the simulator 13

An example program to add numbers 14

An example program to subtract numbers 15

Reviewing the main steps to type in, load and run programs 15

Single -stepping programs 16

A look at the original 1 948 Baby program 19

APPENDIX A: Setting up the latest Java Baby simulator 21

APPENDIX B: Baby control panel switch and button re ference 28

APPENDIX C: Setting up the old Java Baby simulator 32

Version 4.0 (February 2014) Page 3 of 35 Author: NC, based on original work by JT.

Who this guide is for

This guide explains the basics of programming the Baby computer. It gives an introduction to programming
concepts applicable to both the PC-based Baby simulator, and the physically recreated Baby running in MOSI. It is
intended particularly for use as an aid for new members of the Baby volunteer team, and will help such colleagues
to get familiar with the fundamentals of programming to a level needed to support the machine. It assumes no prior
knowledge of computer programming.

Operation of Baby control panel switches in order to run the programs is also covered. Because the simulator is
close in its implementation to the actual machine, much of this information is equally applicable to running
programs on the latest Baby simulator, and on the actual Baby machine. Appendix B provides a reference of the
control panel switches and buttons.

If you do already have programming knowledge, you will find that the main óReference Manualô contains extra
technical detail and programming tips. (See either http://www.digital60.org/rebuild/50th/competition/ssemref.html or
file refman.jar that is contained in the downloaded zipfile referred to in Appendix A).

For others, this guide will serve as a primer, so that you can later refer to the more detailed Reference Manual.

Setting t he scene

The work of the Baby volunteer team involves the demonstration of programs running on the PC-based simulator,
and also on the replica Baby itself. We also need to be able to write and run extra programs in order to debug the
Baby machine when needed.

Specifically:

¶ We load programs into the actual Baby computer in MOSI by means of a Baby support PC. This is located
behind the machine racks, and it has a direct load route into the Baby store;

¶ The same programs can be loaded into and run on the PC-based Baby simulator in a Web Browser or
freestanding Java applet;

¶ The programs can be modified, or new ones can be created, using the PC simulator;

¶ Programs thus produced can be transferred back to the main library on the Baby support PC, and loaded
from there for running on the Baby computer itself.

So, why is it useful to be able to create and modify Baby computer programs?

¶ Under fault conditions, it is useful to be able to run the same program in both the Baby computer and on
the Baby simulator. This approach offers useful diagnostic information if divergence of behaviour occurs
whilst running the same code in parallel on both the simulator and on the actual machine. In such cases,
parallel running of code on the two platforms will often give an indication of which underlying functions on
the Baby are exhibiting unexpected behaviour, possibly indicating specific circuitry or components for
further investigations.

¶ It is often desirable to put a failing program into a smaller loop (for example, one with a smaller number of
repeating functions) to aid the diagnostic process. Thus, modifications can be made to the code version on
the simulator, prior to reloading it into the Baby computer.

The ability to run new or modified programs in this way relies on the ability to transfer code easily from the
simulator into the actual Baby. This we can do, because programs from the PC simulator can be transferred to
floppy disc, USB drive or CD, and these can then be used as the means of input to the Baby computer using the
Baby support PC.

Familiarity with the use of the latest simulator is therefore a pre-requisite for Baby volunteers to be able to
demonstrate effectively, and to be capable of debugging operational problems. To that end, the following sections
will guide the reader in Baby simulator operation, and in basic programming techniques using the simulatorôs
features.

http://www.digital60.org/rebuild/50th/competition/ssemref.html

Version 4.0 (February 2014) Page 4 of 35 Author: NC, based on original work by JT.

Introducing t he Baby simulator

A Java based Baby simulator has been written that runs on Windows based PCs, both in a web browser, and as a
freestanding Java program. It is a very close representation of both the 1948 óSmall Scale Experimental Machineô
(the original óBabyô), and of the working replica in MOSI.

It is interesting to note that the Baby simulator described in detail in the rest of this guide is the latest iteration of a
number of simulators that have been produced over the years, and of these, it is the one that is visually and
operationally closest to the actual Baby machine. It is now used daily by support team members. It was originally
produced for a programming competition that was run in association with the University of Manchester at the time
of the Babyôs 60th Anniversary celebrations in 2008, and it re-uses underlying code that had been developed for
earlier command line and Java simulators, adding photo-realistic depictions of the Baby control panel interface. It
also adds easier to use programming and control interfaces, with a close simulation of the operation of the actual
Babyôs control panel switches.

The latest Baby simulator is a Java applet that may be run in three different configurations:

A) Offline local running as a freestanding Java applet

This is useful when you want to be able to run the simulator offline locally, and without the need to use a
Web browser. A disadvantage is that the vertical screen resolution requirements are higher than accessing
it through a Web browser window, because the simulator window must all fit on the screen.

B) Offline local running using a Web bro wser

This is useful when you want to be able to run the simulator offline locally, but in a Web browser.
An advantage is that the vertical screen resolution requirements are a bit lower than running it
freestanding, because the applet may be scrolled up and down in the Web browser window.

C) Online running from an existing Internet or Intranet Web page

This is useful if you do not want to install code on the local PC, and when you are sure you will always
have Internet or Intranet access to a Web page with the Java applet on it whenever you want to run the
simulator. One such web page is at http://www.davidsharp.com/baby/. You can also use this setup to run
the simulator remotely from a network share holding the Baby applet installation on another PC on the
network by using a browser URL to access it. For example: \\192.168.0.106\ssem\index.htm, where ssem
is the network share holding the Baby Java installation on the PC at address 192.168.0.106.

Depending on your PC, you may find that one setup works better on your device than another. For example, when
running offline locally, the simulator may run better in a local Web browser configuration than running the Java
applet in freestanding mode, or vice versa.

The installation setup for each of the three configuration choices is summarised in Appendix A.

Earlier simulators are still available on the support PCs if needed by support team members. In particular, an
earlier Java VM based simulator is also available that may be useful if it is found that the latest simulation will not
install or run on a particular PC. Because of its photo-realistic similarity to the actual Baby machine and its
operation, the use of the latest simulator is covered in detail in this guide. If required, however, Appendix C
summarises how to download and set up the earlier Java VM based simulator. The operation of this is quite similar
to that described in this guide, although the exact layout of the screens, and the behaviour of controls is a bit
different.

Installing the simulator

To download and install the latest Baby simulator, see Appendix A.

This is the Java applet version of the simulator that lets you work with it offline, without needing to access a public
website, and without requiring the use of a browser.

With reference to Appendix A, for the purposes of running these example programs on your own PC, it is therefore
suggested that you install it in the first instance in the configuration for ñOffline local running as a freestanding Java
appletò.

http://www.davidsharp.com/baby/

Version 4.0 (February 2014) Page 5 of 35 Author: NC, based on original work by JT.

Fig. 3 - The Main Store Display

First steps using the simulator

Before we start programming, we will first get a general overview of the simulator and how it relates to the actual
MOSI Baby. In working through this section, you should ideally have the Baby simulator ready to run.

The simulator behaves like the original Baby, but with an additional feature: Rather than
programming in binary 0ôs and 1ôs, we can also use Assembly code. This language allows us to
type in meaningful óinstructionsô and normal decimal numbers to program the Baby simulator,
and to save programs to files that can also be used to load the same programs on the actual
Baby machine. The instructions are 3 letter abbreviations, usually written in capital letters (for

example, STP tells the computer to stop). There are 7 of these instructions used to program the

Baby.

The Baby main memory is called the Store. The monitor in the Baby control panel is the circular
display with green characters on it (see Fig. 1), and it shows what is happening in the Store whenever the red
button labelled Sc at the bottom left of the control panel is pushed in (Fig. 2). The Sc button selection is the usual
setting to see what is happening when programs are being loaded and run.

It is also possible to use the red buttons, labelled A and C (next to the Sc button), to
change the monitor display to show two other special areas of memory in the Baby: the
Accumulator (used to keep track of calculations currently in progress), and the Control
(used to keep track of the current program line that is being executed).

Referring now to the picture of the Main Store in Fig. 3:

¶ There are 32 horizontal rows, and each row has 32 positions. In each position
there is a dot or a dash. A dot represents a ó0ô in the memory and a dash a ó1ô.

¶ Each ó0ô or 1ô in the memory is a bit, so there are 32 bits on each row. This

group of 32 bits is a word, so each line on the screen is one word.

¶ The whole memory has 32 words each of 32 bits . The rows are numbered from 0 at the top to 31 at the

bottom. The bits on a row are numbered from left to right, with bit 0 on the extreme left and bit 31 at the
extreme right.

¶ Each word (a row on the screen) can hold an instruction, or a number.

¶ Most rows are instruction lines, and on these, bits 0 to 4 are an address, as represented in binary notation.
This address is the number of another row in memory which will be used by that instruction to find extra
information to operate on. The instruction itself is identified by settings of bits 13, 14 and 15 in the line.

¶ Numbers are stored in binary form, from left to right along a row. In normal numbers they can range from
2,147,483,647 to minus 2,147,483,648.

¶ The Baby simulator assumes (as does the actual Baby) that the first instruction line for a program is in row
1 of the store (the second one down in the display), and then assumes by default that it will read in the
rows below it sequentially downwards for further instructions. This applies unless the contents of one of
the instruction lines read in that way tells it to read the next instruction from a different store line than the
next one down. This means that Baby program instructions will usually appear in the higher rows on the
display (from row 1 reading down), with any numbers used and written by the program when it runs
appearing in the lower rows on the display (those closer to row 31 at the bottom).

If you are already familiar with binary numbers and how we now usually write them, it is interesting to note that
numbers are stored, and shown in the store, with the lowest value (least significant) bit to the left, and with the
highest value (most significant) bit to the right. So, for example, the binary number corresponding to decimal 6
would be shown as 011 in the Baby store. Compare this to modern day notation, which would usually document
the same number as 110 (with the binary digits reversed in order and significance).

When the simulator is first loaded it automatically loads into the memory a demonstration example program
(diffeqt.asm), which can draw a graph on the store display.

To run the program: click on the switch, near the bottom left of the control panel, marked STOP RUN (Fig. 4).

Fig. 2 - Monitor
Display Selector

Buttons

Version 4.0 (February 2014) Page 6 of 35 Author: NC, based on original work by JT.

Each time you click on the switch, the lever position changes from STOP to RUN (switch down), or
from RUN to STOP (switch up). Click the switch to set it to RUN, and the program draws a graph.
When it has finished the Stop Light at the top left comes on (Fig. 5). Click on the switch again to move
it back to STOP.

Do not click on any of the other switches at this stage. Some do nothing, but others will stop a program from
working. If things do seem to be going wrong, you may have accidentally clicked on a switch. Appendix B gives
their functions, and says how they should be reset for normal operation. If you find you do need to reset the
positions of any switches, manually reload the same program after doing so by choosing file
diffeqt.asm from the Examples menu (by following the procedure described below for Baby9.snp
and substituting diffeqt.asm for Baby9.snp), then rerun the program by clicking on the STOP/RUN
switch to change its position from STOP to RUN.

To run another Example program:

1. Click on Examples (the menu item just above the control panel) and then on Baby9. snp in the window
which opens.

2. Move the STOP/RUN switch to RUN.

3. The program starts, and keeps running until
you move the switch back to STOP.

A version of this program (slidex.snp) is often used on
the Museum Baby to show that it is working.

In 1948, the only way to program the actual Baby was
by pressing the red buttons on the control pan (these
are the 5 rows of 8 red buttons, as shown in Fig. 6).

It took a while to enter a new program into store one bit at a time by pressing individual buttons: If you look
closely, you will see that these 40 buttons are numbered vertically in sets of 5. By pressing a button in the
range 0 to 31, it is possible to change the setting of the corresponding bit on the line of store that is currently
selected (the ñAction Lineò) once the machine switches have been set to the necessary positions to allow
manual input on that store line.

See Appendix B for fuller descriptions of the Baby switch and button functions.

Introducing the Disassembler interface

On the 1948 machine, the only way to read the result of a calculation was to look at the
monitor and to manually convert from binary into normal numbers the dots and dashes
on the screen on the line in store where the program had written the answer. This still
has to be done now when running the actual Baby computer, but fortunately, when
running the simulation, we can use the Disassembler interface. This interface ï which is
included in the Baby simulator itself - helps us with inputting of new programs, and also
with reading the results of running programs.

To see the Baby9 example program loaded earlier in its assembly code form, click on
the View menu item (on the left just above the control panel) and then choose
Disassembler from the drop-down.

A window opens, like the one shown in Fig. 7. This is the program in assembly code.
(You may have to drag the bottom of the window down to see all 31 lines of the
program. Also, it is usually easiest, if possible, to move the Disassembler window so
that it does not overlap the control panel image on your display.)

Fig. 4 ï STOP
/ RUN Switch

Fig. 5 - Stop
Neon

Fig. 7 ï The Simulatorôs
Disassembler Window

Fig. 6 ï The Control Panel Typewriter Buttons

Version 4.0 (February 2014) Page 7 of 35 Author: NC, based on original work by JT.

From now on, we will refer to Disassembler rows as lines:

¶ We can read anything after a semicolon as being a comment added by the Disassembler, and it does not
directly affect the running of the program. So for now, we can completely ignore the top three lines in the
display. Also, anything on the other lines in the Disassembler display after a semicolon is just
documentary, so you can either ignore it or take note of the information there if itôs helpful. (We will see
later that the comments on the lower lines can be helpful in giving alternative interpretations of what a line
of store might be representing).

¶ Each line starts with a number running from 0 to 31. This is the address of the program line in the store.

¶ After this, there are spaces, followed by the 3 letter Assembler code instruction. If the instruction is NUM

(standing for ña Numberò), then what follows it is not an instruction, but data for the program to use.
Otherwise, the 3 letter instruction in the Disassembler indicates one of the 7 functions or instructions that
the Baby is able to perform.

¶ Instructions that are not numbers are usually followed by a number between 0 and 31. This is the address,
corresponding to a target line number elsewhere in Babyôs store that holds any extra information that the
instruction will need to complete its task.

¶ The Disassembler adds a semicolon and a comment to the right of it for each store line entry to indicate
alternative interpretations of what the bits in that line of store might represent. This is particularly useful
when the contents of the line may represent either a Number or a Program instruction, or (in some
programs) where a line can be used as both at different times during program execution.

We will return later to more advanced features of the Disassembler interface that help in programming the Baby
simulator with Assembler instructions. But first, we will get familiar with the various Assembler instructions used in
programs.

Version 4.0 (February 2014) Page 8 of 35 Author: NC, based on original work by JT.

Introducing the A ssembler instructions

NUM Stands For: Number

Following the 3 letter NUM code there is a number (data) that will be used by other instruction lines in the program.

JMP Stands For: Indirect Jump Baby Function Code 0 (000)

This instruction looks in a given store line that has been set up to contain a number that is one less than the

number of the next program line to be read and executed. JMP causes the reading of the number held in the store

line whose own address is given in the JMP instruction line, and it then sets the value for the Current Instruction

(CI) address to be equal to that number:

New Current Instruction (CI) Address =
Number held in the store address given on the JMP instruction line

Remember that it does not jump to execute a program line at the store address given in the JMP instruction line.

Here is the reason for jumping to an address one further back than that containing the next instruction:

It must be one less than the next instruction line address because the Current Instruction line counter value is
always automatically incremented by the Baby just before it reads in the next instruction from the store. So when
the next instruction is about to be read, the first action is to add one to the Current Instruction address that applied

when the last instruction (in this case, the JMP) finished its execution, and then to read the next instruction in from

there. This also explains why we start all programs on line 1 not line 0: the computer starts running with Current
Instruction set at 0, but it immediately adds one to it before it reads in the first instruction from store line 1.

Example:

Suppose on line 1 of a program there is:

01 JMP 25

And, on lines 2, 3, 4, 5 and 25 are:

02 STO 31

03 STP

04 LDN 6

05 STP

25 NUM 3

The effect is as follows:

1. The instruction on line 1 of the program increments the program counter to be 3.
2. Baby automatically adds 1 to the value of 3, indicating that it is line 4 to be read next.

3. Instruction line 4 is read and executed (i.e. LDN 6).

Version 4.0 (February 2014) Page 9 of 35 Author: NC, based on original work by JT.

JRP Stands For: Indirect Relative Jump Baby Function Code 1 (100)

This instruction looks in a given store address that holds a number for calculation of the next program line to be

read and executed: JRP causes the reading of the number that has been set in the store line whose address is

included in the JRP instruction line, and the addition of that number to the present Current Instruction (CI) address

(which will always be the line number holding the JRP instruction). This gives a new value for the Current

Instruction address that is one less than the address of the next instruction to be executed, as follows:

New Current Instruction (CI) Address =
Present Current Instruction Line Address (i.e. the one containing the JRP instruction) +

Number in the store address given on the JRP instruction line

Remember again that it does not jump directly to the address given in the JRP instruction line.

Example:

Suppose on line 1 of a program there is:

01 JR P 25

And, on lines 2, 3, 4, 5 and 25 are:

02 STO 31

03 STP

04 LDN 6

05 STP

25 NUM 2

The effect is as follows:

1. The instruction on line 1 of the program increments the program counter to be 1 (the current program line

number) plus the number held in line 25 (i.e. 1+2 = 3).
2. Baby automatically adds 1 to the value of 3, indicating that it is line 4 to be read next.

3. Instruction line 4 is read and executed (i.e. LDN 6).

LDN Stands For: Load Negative Baby Function Code 2 (010)

This instruction uses a part of the computer called the Accumulator. The Accumulator is an extra memory location

which can temporarily hold a single number to be used during an instruction. The LDN instruction causes a number

value that is held in a particular line of the store to be read and negated, and the resulting number to be written into
the Accumulator, replacing what was there before.

Example:

Suppose on line 1 of a program there is:

01 LDN 25

And, on line 25, is:

25 NUM 123

The effect of this is as follows:

1. The instruction on line 1 of the program loads the number held on line 25 into the Accumulator.

Note that it does not copy the number 25 itself into the Accumulator: Instead, 25 is the program (store line)
address at which to find the number to put into the Accumulator. Also, note that ñLoadò means ñcopyò the
value in the program (store) line being referenced into the Accumulator, not ñmoveò, so the number 123 is
still present on line 25 after the instruction is completed.

Version 4.0 (February 2014) Page 10 of 35 Author: NC, based on original work by JT.

2. As the number is copied it into the Accumulator its sign is changed: Positive numbers in Store become
negative in the Accumulator, and negative numbers become positive. This is why the instruction is called
Load Negative. There will then be -123 stored in the Accumulator, and 123 is still stored on line 25.

Example:

The instructions

02 LDN 26

26 NUM - 8

will load a value of 8 into the Accumulator, and -8 will remain stored on line 26.

STO Stands For: Store Baby Function Code 3 (110)

This instruction causes the value currently held in the Accumulator to be copied and written into a specified line in
the Store.

Example:

Suppose line 8 of a program is:

08 STO 27

The effect will be to use 27 as an address and store (i.e. copy) the number in the Accumulator to line 27 of
the program. The number replaces whatever was on line 27, and the number in the Accumulator remains

unchanged.

Example:

If the Accumulator holds 1234, and on line 6 of a program there is:

 06 STO 21

The instruction will replace whatever was on store line 21 with the value corresponding to 1234. There will
still be 1234 in the Accumulator.

SUB Stands For: Subtract Baby Function Code 4 (001)

This instruction causes the value currently held in the Accumulator to have subtracted from it the value that is held
in the specified line in the main Store, with the result of the calculation being stored back in the Accumulator. The
previous value held in the Accumulator is overwritten with the resulting value.

Example:

Suppose line 4 of a program is:

O4 SUB 27

and on line 27 is:

27 NUM 123

The instruction uses 27 as a store address, containing the number to be subtracted from that in the
Accumulator, and it subtracts 123 (found on line 27) from the number currently in the Accumulator, leaving
the number resulting from the calculation in the Accumulator.

Version 4.0 (February 2014) Page 11 of 35 Author: NC, based on original work by JT.

STP Stands For: Stop Baby Function Code 7 (111)

This stops the program, so it will be the last instruction to be obeyed in the program (though not necessarily the last
line of the program as displayed). The Stop Light comes on when it is reached.

CMP Stan ds For: Compare Baby Function Code 6 (011)

This causes the program to check whether the number currently stored in the Accumulator has a negative value. If
so, it causes the next instruction line in the program to be skipped, with the one on the line below that executed
next instead.

Example:

Suppose the program has the following lines in it:

03 CMP

04 STP

05 LDN 25

25 NUM 987

a) Assuming the Accumulator contains a value of 0:

When line 3 is executed, the CMP instruction causes a check of whether the Accumulator is negative

(which it is not), and so the program next executes line 4 of the program (Stop), causing it to end, and
the Stop light to come on.

b) Assuming the Accumulator contains a value of -1:

When line 3 is executed, the CMP instruction causes a check of whether the Accumulator is negative

(which it then is), and so the program next executes line 5 of the program, causing the value of -987 to
be loaded into the Accumulator store.

Getting more familiar with the Disassembl er

When you load an existing program into the Disassembler window (either from the store, or from a file):

¶ As we have noted, the Disassembler makes a ñbest guessò of whether the bit settings in a given line of
store are more likely to be a command (instruction), or a number, and then puts a likely interpretation at the
start of the line, after the number of the store line. It also adds any alternative interpretation to the right of
the line, including it after a semi-colon.

¶ If there is only a number to the right of the semicolon in a line, then that is the decimal conversion of the

binary value of the bits in that line (just like a number that a NUM command would provide).

¶ The Disassembler usually assumes the line contents to most likely be a command or an instruction line

rather than a NUM number statement if any of the bits in positions 13, 14 and 15 are set to be 1.

For example: For a line holding the number -1 (a case when all 32 bits in the line are set), it indicates the

possibility that it might be a STOP instruction line instead of a number line by adding ñ; STP ò at the end of

the display for that line. (In that case, the line contents might mean STOP because the bits 13-15 are all set,

just as they would also be in a STOP command line):

NUM - 1 ; STP

¶ If the most likely interpretation instead was that the bits represented a command (an instruction), then the
Disassembler indicates the possible alternative decimal numeric interpretation of the bit settings in the form
of a comment to the right of the semicolon in the display.

Version 4.0 (February 2014) Page 12 of 35 Author: NC, based on original work by JT.

For example:

STO 2 ; 24578

¶ The Disassembler assumes that a line where the bit settings in a store line can convert to a decimal

number in the range 0 to 31 most probably contains a JMP instruction line instead of a number.

This seems to be a likely interpretation to the Disassembler because in that case bits 13-15 in the line are

zeroes (just as they would be for a JMP instruction) and the bit settings in positions 0-4 of the line also form

a valid target line number (an address in store) that a JMP instruction could use. It therefore puts the

interpretation that the line is a JMP command to the left of the display, but also indicates an alternative

possibility that it is a NUM type number statement to the right of the semicolon.

For example:

JMP 4 ; 4

¶ The Disassembler window can be refreshed at any time by clicking on the Load from store button at the
top. This causes it to be synchronised with the bit values in the store lines currently in the main Baby
simulator window. (Note also that if you redisplay the Disassembler window using the Disassembler menu
option from the View menu, it automatically causes a refresh from store of the current values.)

This is useful in the following circumstances:

i. When a program has been running, and it has written changes back into the store:

To read the Disassembler interpretation of what those changed store line values represent. For
example: to quickly read a binary result that has been written into a line in store by the program in
the form of its decimal equivalent.

ii. Whilst a program is running, stopped, or whilst it is being manually stepped through:

To quickly check the values currently held in the CI & PI (Control) and A (Accumulator) working
stores at that particular point in the execution of the program. On loading the Disassembler
window, and on later performing a Load from store , the current values in these stores are listed in
the top three lines of the Disassembler display, as shown in the following example:

; CI: 5

; PI: J MP 0 ; 0

; ACC: - 1

iii. When preparing to type a fresh program into the Disassembler window:

To quickly set all the Disassembler lines to default zero (JMP 0) values before starting to type.

This can be done by clearing the store (by flicking the KSc switch in the main simulator window)
just before clicking on the Load from store button.

¶ The Disassembler can be used to update all lines in the main store of the simulator to match with the
commands and values in the Disassembler window by clicking on the Save to store button.

This is useful in the following circumstances:

i. When a program whose store values are held in the Disassembler window has just been running
and it has written changes back into the store lines:

In order to quickly reset the store values back to the initial settings ready to start another run.

ii. When you have typed in a program using the Disassembler window:

To load the lines typed into the Disassembler into the main Store ready for running, or so that the
new program lines can be saved to a file from there for later use. (Saving is performed using the
simulatorôs Save Snapshot or Save Assembler options from the File menu).

If you are typing in a set of instructions using the Disassembler, then you can type anything you like to the right of a
semicolon. It will be ignored when later loading the code into the simulatorôs store, or when it is saved to file from

Version 4.0 (February 2014) Page 13 of 35 Author: NC, based on original work by JT.

the simulator. Because of this, the usefulness of typing comments into the Disassembler is limited, because the
comments canôt be saved. They will be lost whenever you close the window or refresh it (for example, by using the
Load from store option).

Adding numbers together

The purpose of the original Baby design was to test using Cathode Ray Tubes as computer memory. Everything
was built using the least number of parts. Because of that, no instruction to add data numbers was provided, only
the instructions to subtract, and to change a number to the negative of itself. The reason is that you can always add
numbers using subtraction instructions as long as you can negate the answers, but you cannot subtract without an
instruction to subtract.

Below is a program to add two numbers. As there is no add instruction, it uses subtraction to get the answer.

We will add 136 to 478 (but any numbers could be used - as long as the result is smaller than 2,147,483,647!):

 Program Explanation

01 LDN 10 Load into the Accumulator the number found on line 10, changing its sign.

 The Accumulator becomes -136.

02 SUB 11 Subtracts the number on line 11 from the Accumulator.

 Subtract 478 from -136 leaving the answer, -614 in the Accumulator

03 STO 15 Copy the number in the Accumulator to line 15

Copy -614 onto line 15

04 LDN 15 Copy into the Accumulator the number on line 15 and change its sign.

 We now have 614 in the Accumulator.

05 STO 15 Copy the number in the Accumulator to line 15.

 The answer (614) is now on line 15.

06 STP Stop.

...

10 NUM 136 One of the numbers to be added

11 NUM 478 The other number to be added.

Preparing to type in and run a program on the simulator

At the bottom of the control panel is a row of switches called key switches. The main ones used to run programs
are shown in Fig. 8. When you click on one of these in the simulator, it flips down and then returns back up.

(Appendix B has fuller details of switch functions and their locations on the control panel.)

Fig. 8 - Control Panel Switches

In order to load and run a program on the simulator, standard switch settings must first be configured, as follows:

1. Check that the switch positions are at the Normal Run setting, which is:

¶ STOP/RUN switch in the Up position (STOP).

¶ All Line switches in the Down position.

¶ All Function switches in the Down position.

¶ WRITE/ERASE switch in the Up (WRITE) position.

¶ AUTO/MANUAL switch in the Down (AUTO) position.

Version 4.0 (February 2014) Page 14 of 35 Author: NC, based on original work by JT.

2. Click on the key switch marked KSC. This clears the main Store memory. The Monitor should show only

dots, indicating that the memory now contains all 0ôs.

3. Click on KCC. Nothing seems to happen, but that clears both the Accumulator and Control stores and it
prepares the computer to enter a new program.

4. At the top of the control panel click on View and then Disassembler . The window loads in the values

currently in the main Store, and each line of the program will read ñJMP 0; 0ò.

5. If the Stop Light is on now, use the KC switch to extinguish it, then KCC to reset the line counter.

An example program to add numbers

After preparing the switch positions as above, we will now type in a program to
add two numbers:

(Note that we do not put anything in on line 0. You will see why later).

1. On line 01: First erase JMP 0 and replace it with LDN 10 .

2. On line 02: Erase JMP 0 and replace it with SUB 11 .

3. Continue until all the program lines are typed in as shown to the left of

the semicolons for each line (see Fig. 9). Any unused lines can be left
as they were, and you can leave anything to the right of semicolons on
the edited lines unchanged.

4. When you have entered the program it should look like the image on
the right, except for the details to the right of the semicolons.

5. Click on Save to s tore at the top of the Disassembler window. This

copies the program to the Baby simulatorôs memory store.

6. Click on Load from store to load back the same values from the store into the Disassembler, this time with
the comments to the right of the semicolons added automatically by the Disassembler, as is shown in the
picture.

7. To save the program so that you can load it for running later: Click on File in the main simulator window
(on the menu line right above the control panel photo in the simulator) then choose either Save snapshot
or Save assembly . It does not matter which of the two file formats you save in when working with the Baby
simulator, but note that any program that is to be loaded into the actual Baby from the support PC in the
museum will need it to be saved in Snapshot format. Enter a meaningful filename of your choice, include a
file extension of either ñ.snpò for snapshot, or ñ.asmò for assembly, and save your program.

8. At any time, you can reload such a saved program into the Baby simulatorôs store by using File and Load
snapshot/assembly .

9. Now click the STOP/RUN switch.

10. The program should then run, and the Stop Light should come on. The answer will be displayed on line 15
of the monitor in binary.

We can read the answer directly from the screen in binary and convert it manually to a decimal, but we can
also use the Disassembler to quickly convert it for us, as follows:

11. At the top of the Disassembler window click on Load from store.

12. On line 15 in the Disassembler will be the answer to the addition.

If you do want to manually convert the result on the lines shown in binary to a decimal number, you
need to remember that the least significant bit is on the left and the most significant on the right.

Fig. 9 - Example Program Lines in the
Disassembler

Version 4.0 (February 2014) Page 15 of 35 Author: NC, based on original work by JT.

To perform another addition:

1. Change the numbers on lines 10 and 11 in the Disassembler window.

2. Copy the program to the Baby simulator memory store by clicking Save to Store .

3. The STOP/RUN switch should be at STOP, if not, change it to STOP.

4. The Stop light is probably still on. If so, click on the key switch KC (to the right of the STOP/RUN switch)
to turn the Stop light off, and then click on KCC to reset the line counter.

5. Switch the STOP/RUN switch to RUN. The program runs until the Stop Light comes on.

6. See the result in the Disassembler window by clicking Load from store .

If you add small numbers in this way (values less than 32), you will notice that on lines 10 and 11, what you

entered as NUM is changed to JMP in the Disassembler window when you click Load from store . This

happens with numbers between 0 and 31, as we explained earlier when explaining the Disassembler. It is

safest though to type NUM whenever typing in a number yourself using the Disassembler, as a reminder that

you are not inputting an instruction line.

An example program to subtract numbers

In this example we subtract 36 from 89. Once again we will put the numbers in line 10 and 11.

Follow the process above that was used for the input and running of the addition program using the Disassembler
window, and try inputting and running the program below in a similar way. Remember to clear the memory as
described earlier (see ñPreparing to type in and run a programò) before inputting this new program.

Program Explanation

01 LDN 10 Load into the Accumulator the number in line 10 changing its sign. -89 is now in

the Accumulator.

02 STO 12 Store the number in the Accumulator to line 12.

03 LDN 12 Load into the Accumulator the number on line 12 changing its sign. (89 is now in

the Accumulator.)

04 SUB 11 Subtract the number in line 11 from the Accumulator

05 STO 15 Store the number in the Accumulator to line 15.

 The answer, 53, is on line 15.

06 STP Stop

...

10 NUM 89 The first number.

11 NUM 36 The number to be subtracted from the first number.

Review ing the main steps to type in, load and run program s

1. Check that the switch positions are at the Normal Run setting:

¶ STOP/RUN switch in the Up position (STOP).

¶ All Line switches in the Down position.

¶ All Function switches in the Down position.

¶ WRITE/ERASE switch in the Up (WRITE) position.

¶ AUTO/MANUAL switch in the Down (AUTO) position.

2. Click on key switches KSC and KCC. This clears the computer ready to receive a new program.

Version 4.0 (February 2014) Page 16 of 35 Author: NC, based on original work by JT.

3. Click on Load from store in the Disassembler window to clear the window ready to enter a new program.

4. Type in the program.

5. Click Save to Stor e in the Disassembler window.

6. If the Stop Light is on use the KC switch to extinguish it, then use KCC to reset the line counter.

7. If not there already, change the STOP/RUN switch back to STOP.

8. Change the STOP/RUN switch to RUN.

9. When the Stop Light comes on switch the STOP/RUN switch to STOP.

10. Click on Load from store in the Disassembler window to read the result.

Single -stepping programs

We normally use the STOP/RUN switch to run straight through a program. However, it is also possible to step
through a program one instruction at a time, and this is particularly helpful when we need to diagnose problems
with programs, or problems with the actual Baby.

To single step a program in this way, we use the KC key switch.

With a program in memory, and with STOP/RUN set to STOP: Repeatedly click on the KC switch while watching
the monitor display. You will then see the program being executed, an instruction at a time.

Normally, when a STP instruction is reached, the program stops and the Stop Light neon comes on. However,

when we single step a program using the KC switch, we do not stop single stepping after hitting the Stop
instruction, but carry on to read the next store line after the one with the Stop instruction. If that next line is a blank

line of all zeros (which, as we will explain later, can be interpreted as a JMP 0 instruction), the computer will then

automatically jump back to read in again next the first instruction line of the program from line 1.

By pressing the KCC switch to reset the line counter to zero right after using KC to step past STP (so extinguishing

the Stop neon), we make sure that the program counter is set to 0 ready to read the next program instruction from
line 1, even if the line after the Stop line was not a blank line.

Why a jump back happens if the next line is blank will become clear by examining the Jump instruction in detail:

As explained earlier in the description of the JMP instruction, it allows us to move forwards or backwards to a

different line of the program. It is described as an indirect jump. Again, remember that it does not jump to execute

an instruction held in the address given in the JMP instruction line itself, but looks at the line in store given by the

JMP line and reads the numeric value held in it. It then jumps to execute an instruction held in the line of store one

higher than the numeric value that it has read.

To illustrate, suppose there are these lines in a program:

03 JMP 20

...

20 NUM 7

The computer does not jump from line 3 to line 20: Instead, when executing the JMP it sets the Current Instruction

line counter to 7, using the number found in line 20. There is then the complication to remember (as we explained

for the JMP instruction), that we must target the line number one above the one we want to run next. So for this

example, we targeted line number 7 because we wanted the program to continue its execution starting from line 8,
not line 7.

To demonstrate for yourself the effect of single stepping a program that includes JMP instructions, enter and run

this example program:

1. Clear the memory with KSC and KCC.

Version 4.0 (February 2014) Page 17 of 35 Author: NC, based on original work by JT.

2. Load from store to clear the Disassembler window.

3. Type in the program below:

 Program Explanation

01 JMP 25 Jump to execute line 5, one more than the number in line 25

05 JMP 26 Jump to execute line 10 one more than the number in line 26

10 JMP 27 Jump to execute line 15, one more than the number in line 27

15 JMP 28 Jump to execute line 1, one more than the number in line 28

25 NUM 4

26 NUM 9

27 NUM 14

28 NUM 0

4. Select Save to store .

5. Using the KC key switch, single step through the program. It will jump from line to line and never stop, with
the highlight in the store line showing you the Current Instruction line number at the end of executing each

of the JMP instructions. If you switch to RUN nothing seems to happen, because it jumps so quickly that it

does not show on the monitor.

6. Switch back to STOP and use key switches KSC and KCC to clear the program from memory.

Clearing the memory sets all the bits to 0 (which you can confirm after clearing the memory by using Load from

store in the Disassembler window), and the Disassembler window shows the cleared lines as JMP 0 instead of

NUM 0. The reasons for this were explained earlier. Whether a row of store that is all zeros will actually be used as

a JMP 0 instruction instead of a number 0 depends on whether the Baby reads that particular line in when it is

looking to read an instruction to obey, rather than when it is looking for data.

So what happens when the Baby executes an instruction line that is all zeroes?

As explained in the Assembler Instructions section, a pattern of 000 in bit positions 13 to 15 of an instruction line is

interpreted as a JMP, and when the Baby executes this line, it refers to the first 5 bits address (i.e. bits 0-4) in the

same row to get the store address needing to be read that itself indicates the store location of the next program
instruction.

In this case, because the address bits 0-4 at the start of the blank row are all zeros, the address part of the JMP

instruction is also 0, and the instruction is JMP 0 . This means that the computer looks in line 0 (the address part

of the JMP instruction) to read a number telling it the row address of the next instruction to follow. Because that line

is usually all 0ôs, the number it finds there is zero, and the JMP sets the CI line counter to 0, ready to load in and

execute the next instruction from line 1 after the automatic CI increment has taken place. (Remember that JMP

jumps back to the line number one below that of the next instruction line to be executed).

The overall effect is that when the program reaches a line of all 0ôs, and when line 0 of the program also is all 0ôs,

the program jumps to line 0 as its Current Instruction line number after executing the JMP instruction, ready to load

in and execute the instruction on line 1.

So how does this relate to single-stepping a program past the Stop instruction?

Remember that when the Baby stops running at a Stop or STP instruction, pressing the KC switch then causes it to

go to on to execute the next line in store regardless. If this line is blank (which it often is right after a STP line), and

if line 0 is blank also, then the program jumps to line 0 (i.e. with CI set to 0) ready to run the program again from

line 1. So if you single step a program past the STP instruction, it will often jump back to start executing again the

instructions from line 1.

To illustrate the effect of single stepping through a program that instead contains the CMP (Compare) instruction:

As we described previously in the description of the CMP assembler instruction, when the instruction CMP is

reached the Accumulator is examined. If the number in the Accumulator is found to be negative, the program in
effect jumps over the next line to execute the next line but one.

Read again the description of the CMP (Compare) instruction earlier, and then look at the following program, before

inputting it, to work out where it will stop, and what number will be displayed on line 20 when it stops:

Version 4.0 (February 2014) Page 18 of 35 Author: NC, based on original work by JT.

01 LDN 30

02 CMP

03 JMP 29

04 STO 20

05 STP

06 LDN 31

07 CMP

08 JMP 28

09 STO 20

10 STP

11 LDN 29

12 STO 20

13 STP

é

28 NUM 10

29 NUM 5

30 NUM - 1

31 NUM 1

Remember that:

¶ If you single step the program it will jump over the Stop (STP) instruction, and when it reaches an empty

line, it will read this as a jump to line zero and will then carry on again from the top.

¶ If you want the program to run and stop normally, use the RUN switch.

Here is what you should find happens when you run it with the RUN switch:

1. Line 1: Loads 1 into the Accumulator (remember that the sign changes when LDN is used).

2. Line 2: Test the Accumulator.

[It is positive - so do not skip a line].

3. Line 3: Jump to the address given in line 29.

[It references line number 5 - so the program will continue from line 6].

4. Line 6: Load -1 into the Accumulator.

5. Line 7: Test the Accumulator.

[Accumulator is negative - so jump over the following line to the next].

6. Line 9: Store what is in the Accumulator

[Stores -1 in line 20]

7. Line 10: Stop

So the answer is: The program places -1 on line 20.

Other things to try:

¶ Try changing the sign of the numbers on lines 30 and 31 to get other results.

¶ Instead of using the RUN switch: Try single stepping through the program using the KC switch to compare
what happens after the Stop line is reached, and when KC is then pressed again.

Version 4.0 (February 2014) Page 19 of 35 Author: NC, based on original work by JT.

A look at the original 1948 Baby program

This program finds the highest factor of a number set in Store line 23, and writes the answer into Store line 27.

The code is based on Geoff Tootillôs "Amended Version" of the original code from 18 July 1948 notes that used
262144 (= 2^18) ï set up in Store line 23 ï as the number to find the highest factor of. The answer is 131072 (=
2^17). The amended version tidied up variable initialisation, but did not change the coding logic of the original.

The original run took 52 minutes on June 21

st
 1948, using over 130,000 subtraction loops and more than 3 million

CRT store accesses. Equivalent code is loadable into the Baby from Disassembler snapshot file FACTORCT.SNP,
which also runs on the reconstructed Baby machine in around 52 minutes. There is also a faster-running version
that can be loaded from file PROG1.SNP. This one finds the highest factor of 989 (using 989 in line 23 instead of
262144), giving the answer of 43 in around a minute. Both snapshot files are on the Baby support PCs in MOSI.

To run in the simulator:

i. Set all the switches to the Normal Run position.
ii. Load FACTORCT.SNP (for the original run simulation) or PROG1.SNP (for the shorter run demo version).
iii. If the Stop light is lit, press the KC switch, then KCC.
iv. Set the switch to RUN.
v. Monitor Store (line 27 holds the answer when Stop is reached).

Program Code

Fig. 10 - The program shown in store, Disassembler and bit value formats

Note: The disassembler display in Fig. 10 has been simplified to show only relevant assembler interpretations for
each line. Note also that the actual snapshot file FACTORCT.SNP also sets the bit 5 (value 32) on some of the
program lines, but this bit is ignored when the program runs, so it has been omitted here for reasons of clarity.

0000: 00000000000000000000000000000000

0001: 00011000000000100000000000000000

0002: 01011000000001100000000000000000

0003: 01011000000000100000000000000000

0004: 11011000000001100000000000000000

0005: 1110100000000010000 0000000000000

0006: 11011000000000010000000000000000

0007: 00000000000000110000000000000000

0008: 00101000000001000000000000000000

0009: 01011000000000010000000000000000

0010: 10011000000001100000000000000000

0011: 10011000000000100000000000000000

0012: 00000000000000110000000000000000

0013: 00000000000001110000000000000000

0014: 01011000000000100000000000000000

0015: 10101000000000010000000000000000

0016: 11011000000001100000000000000000

0017: 11011000000000100000000000000000

0018: 010110000000011000000000 00000000

0019: 01101000000000000000000000000000

0020: 10111111111111111111111111111111

0021: 10000000000000000000000000000000

0022: 00100000000000000000000000000000

0023: 00000000000000000011111111111111

0024: 11111111111111111100000000000000

0025: 0000000 0000000000000000000000000

0026: 00000000000000000000000000000000

0027: 00000000000000000000000000000000

0028: 00000000000000000000000000000000

0029: 00000000000000000000000000000000

0030: 00000000000000000000000000000000

0031: 00000000000000000000000000000 000

Version 4.0 (February 2014) Page 20 of 35 Author: NC, based on original work by JT.

Program Logic

Lines 1 - 4: Initialisation

01 LDN 24 ; Loads to Acc - (no. to be factored - 1) = initial - b test value

02 STO 26 ; Stores the initial ïb test value in line 26

03 LDN 26 ; Loads initial +b value into Acc

04 STO 27 ; Stores the initial +b test value in line 27

Lines 6 - 8: Do subtractions using the current b test value, check sign of difference, jump back if 0 is not passed yet

05 LDN 23 ; Loads in no. to be factored to Acc .

06 SUB 27 ; Subtracts the latest +b test value from the current Acc value

07 CMP ; Jumps to execute line 9 if Acc is now ïve .

08 JRP 20 ; Loops back to execute from line 6 again if Acc value not yet ïve .

Lines 9-13: Form a remainder, Test it and Stop if it is Zero (because we have a result then)

09 SUB 26 ; Subtract current - b test value from Acc (so adds +b back on).

 ; By adding +b back on, we identify if sub t ractions have oversho t 0

 ; by less than the amount +b, in which case b isnôt a factor.

; If instead we get back to 0 exactly, then it must be a factor.

10 STO 25 ; Stores the calculated overshoo t difference valu e in line 25.

 ; If this is 0, weôve found the factor. If itôs +ve, we havenôt.

11 LDN 25 ; Loads ïve of line 25 overshoot difference value.

; If a ïve no is loaded now, then we havenôt got a factor.

; If a non ïve no is loaded it must be 0 and we have the factor.

12 CMP ; I f Acc is ïve : Jumps to execute from 14 with a new test divisor.

 ; If Acc is not ïve: E xecute next line 13 to Stop.

13 STP ; STOP. Acc was NOT ïve so Divisor was found. Answer is in Line 27 .

Lines 14 ï 19: Form a new divisor b to be tested, then jump back and test it as a possible factor using subtractions

14 LDN 26 ; Load the last tested b value as a positive Acc value .

15 SUB 21 ; Decrement the last tested b value by 1 .

16 STO 27 ; Store new +b test value in line 27 .

17 LDN 27 ; Load new ïb test value into Acc.

18 STO 26 ; Store new - b test value in line 26 .

19 JMP 22 ; Execute subtractions from line 5 again using new test b value .

Lines 20 ï 24: Fixed data

20 NUM - 3 ; Value for use in the JRP jump instruction in line 8 .

21 NUM 1 ; Value for decrementing value of the test b value in line 15.

22 NUM 4 ; Value for use in the JMP jump instruction in line 19.

23 NUM - 262144 ; Negative form of the number to be factored .

24 NUM 262143 ; First b value to check as being a fact or of number in line 23.

Lines 25 ï 27: Variable data written to during execution (initially all zero)

25 NUM 0 ; Latest overshoot difference (written by line 10) .

26 NUM 0 ; Latest - b value under test (written by line 2 or 18) .

27 NUM 0 ; Latest +b value under test (written by line 4 or 16). *

28 NUM 0 ; Not used.

29 NUM 0 ; Not used.

30 NUM 0 ; Not used.

31 NUM 0 ; Not used.

* The answer is left displayed in store line 27 at end of run.

Version 4.0 (February 2014) Page 21 of 35 Author: NC, based on original work by JT.

APPENDIX A: S etting up the latest Java Baby simulator

PC System requirements

¶ Windows XP, Windows Vista, Windows 7, Windows 8 or Windows 8.1.

¶ Java SE Runtime version 6 or later installed.

(If this is not already installed, see the section below on ñDownloading and installing the Java Runtimeò).

¶ For running the simulator offline locally as a freestanding application:

A Windows Desktop resolution set to a minimum of 900 pixels in height.
It may be necessary to auto-hide the Windows Taskbar if it overlaps the simulator display.

¶ For running the simulator in a Web browser window (offline locally or online):

A Web browser equivalent to Internet Explorer 7 or later;
The browserôs Zoom display setting at 100%;
The Windows Desktop resolution at a minimum of 768 pixels in height, but recommended 800 or above;
If necessary, run the browser in Full Screen mode (to avoid the need to scroll the applet up and down).

Installation overview

This Baby simulator is a Java applet that may be set up to run in three different configurations:

A) Offline local running as a freestanding Java applet

B) Offline local running using a Web browser

C) Online running from an existing Internet or Intranet Web page

The installation setup for each of these three configuration choices is summarised in the following sections.

A) Setup for offli ne local runnin g as a freestanding Java applet

1. The Java applet itself may be downloaded from David Sharpôs archive website by going to the following
link: http://www.davidsharp.com/baby/ssem.zip .

2. A message similar to the one shown below will appear (the exact message will vary depending on the
version of your Operating System and web browser). Choose the option to Save as , and store the file in a
suitable folder on your PCôs local drive, noting where this is.

Fig. 11 ï Zipfile save dialogue

3. Find the downloaded SSEM.ZIP file on your PCôs local drive and extract all of its contents (as shown

below) into a new folder on your local drive (for example C:\ssem).

Fig. 12 ï Zipfile contents

http://www.davidsharp.com/baby/ssem.zip

Version 4.0 (February 2014) Page 22 of 35 Author: NC, based on original work by JT.

4. Once all the files are in the folder, the ssem.jar file is the Applet to open in order to start up the simulator

locally. You will need to have Java Runtime installed in order to do this.

¶ If you do not have Java Runtime installed on your PC already:

Download and install the latest version as described below for ñDownloading and installing the Java
Runtimeò.

¶ If you are not sure whether you have Java installed:

Try opening ssem.jar in the extract folder on your PC by double clicking it in Windows explorer, and it
will be indicated if there is no program installed to open it. In that case, cancel the offer that Windows
makes to find a program for you, and follow the instructions below for ñDownloading and installing the
Java Runtimeò.

5. When you have Java Runtime installed on your PC:

You will be able to open the ssem.jar file using Windows Explorer. This will start the freestanding version
of the Baby simulator.

You can also create a Desktop shortcut to the file for easy running later.

Depending on your PCôs folder layout and the security settings on the folder that you chose to extract the
simulator into, you may also find that you need to review your folder permissions so that you can save and
load Snapshot and Assembler program files at the chosen location using the simulator.

Note that if you also want to access the simulator offline locally with a Web browser, you will need to configure
Java security settings to allow it ï see the section below headed ñSetup for offline local running using a Web
browserò.

B) Setup for offline lo cal running using a Web browser

This method of running has two stages to the configuration:

1. Install the Java applet locally as described above for ñSetup for offline local running as a freestanding Java

appletò.

2. Configure the Java security settings as needed to allow the browser to access the index.htm web page
installed on the local PCôs filestore as part of the main local Java applet installation. This file has coded in
it a reference to run the ssem.jar file as a web page applet whenever the local index.htm page is
displayed in a browser.

To set up the Java security settings for this to work:

i. Confirm the full local filestore path to the index.htm web page, including the exact capitalisation of
any folder and drive names in the file path.

The easiest way to determine this is to use Windows Explorer to locate the index.htm file in the
folder holding the extracted Baby simulator files on your PC (for example, C:\ssem), then to double
click on it to open in the browser. If prompted, click to Allow Blocked Content .

ii. If (as it usually will) the page fails to load with Application Blocked messages, then you will need
to configure the Java security settings for the page as in the following steps.

If instead it loads cleanly at this point, and if the Baby simulator appears on the web page, then
your Java setup needs no further configuration.

iii. Before clearing down the Application Blocked messages, note the exact file path to the
inde x.htm file as shown in the browser URL line, including the case of all characters in it ï for the
example below, this is C:\ssem \index.htm .

Version 4.0 (February 2014) Page 23 of 35 Author: NC, based on original work by JT.

Fig. 13 ï Browser URL path to the file

iv. Open the Configure Java utility.

¶ For Window XP, Windows Vista and Windows 7, this is in Start > All Programs > Java .

¶ For Windows 8 or 8.1, use Search and type in Configure Java to find it.

v. When the Java Control Panel opens, click on the Security tab, as below, then on Edit Site List .

Fig. 14 ï Java Control Panel

vi. The Exceptions Site List will open.

vii. Click on Add , then in the Location box type the characters FILE: \\\ followed by the exact syntax of

the drive path to the index.htm file as you noted it previously in the browser URL (in the example
above, C:\ssem \index.htm).

This results in an entry needed, for this example, of

FILE: \\\C:\ssem \index.htm

Note again that the URL supplied is case sensitive throughout and the part after the three
backslashes must match that appearing in the browser ï in this example, if a c is typed instead of
C it will not work.

When it appears similar to the entry below (using whatever the path to the file is on your own PC),
click on OK to return to the main list:

Version 4.0 (February 2014) Page 24 of 35 Author: NC, based on original work by JT.

Fig. 15 ï Java Exception Site List addition for local file path

viii. You may receive a Security Warning now that including a FILE location on the Exception Site List
is considered as security risk. If so, click on Continue . (Only do this for cases like this where the
page location is well known and trusted).

ix. You will be returned to the first screen, now showing the site included in the current list of excluded
sites, as below:

Fig. 16 ï Java Control Panel with local file path added

x. Click on OK to complete the setup.

xi. Confirm access to the page using a fresh Web browser window.

You should now receive a warning message like the one below.

On this, tick the I accept the risk check box, and then click Run .

Version 4.0 (February 2014) Page 25 of 35 Author: NC, based on original work by JT.

Fig. 17 ï Security Warning Message for local file access

xii. The index.htm page should then load normally, and the Baby applet should run from it.

You can then also create a bookmark entry in your browser Favourites to run it directly from the browser in the
future, without the need to navigate to it with Windows Explorer.

Depending on your PCôs folder layout and the security settings on the folder that you chose to extract the
simulator into, you may find that you need to review your folder permissions so that you can save and load
Snapshot and Assembler program files at the chosen location using the simulator.

C) Setup for online running from an existing Internet or Intranet Web page

For this mode of running, no local installation of the Baby Applet is required: instead, it just needs an
appropriately configured Java SE Runtime security configuration for the target Web page URL, as follows:

1. Confirm that Java SE Runtime 6 or later is installed. If unsure, you can follow the installation process
under ñDownloading and installing the Java Runtimeò below, and it will tell you if already present when it
starts installing, at which point you can quit the setup.

2. The latest versions of Java SE will block the running of the Baby applet on an untrusted Web page
because the applet is not signed with a known Certificate. Opening such a Web page with the applet on it
will cause the error box ñApplication Blocked by Security Settingsò to appear, and the applet will appear as
a dotted outline, with a red icon and the word ñErrorò in it.

You will then need to enable running for the URL of the containing Web page as follows:

For the example of the target page holding the applet at http://www.davidsharp.com/baby/ :

i. Open the Conf igure Java utility.

¶ For Window XP, Windows Vista and Windows 7, this is in Start > All Programs > Java .

¶ For Windows 8 or 8.1, use Search and type in Configure Java to find it.

ii. When the Java Control Panel opens, click on the Security tab, as below, then on Edit Site List,
as shown:

http://www.davidsharp.com/baby/

Version 4.0 (February 2014) Page 26 of 35 Author: NC, based on original work by JT.

Fig. 18 ï Java Control Panel

iii. The Exceptions Site List will open. Click on Add , then in the Location box type the Web page

URL containing the Baby applet ï in this case http://www.davidsharp.com/baby/. Then click on OK.

Note that the URL supplied is case sensitive throughout ï it must exactly match the way it appears
in the browserôs URL line when accessing the site to work. In this case, all must be in lowercase.

Fig. 19 ï Exception Site List Entry for an Internet location

iv. You may receive a Security Warning that including an http location on the Exception Site List is
considered as security risk. If so, click on Continue . (Only do this for cases like this example
where the Web page is well known and is trusted).

v. You will be returned to the first screen, now showing the site in the list of excluded URLs, as below:

Fig. 20 ï Showing the Exception Site List with an Internet location

http://www.davidsharp.com/baby/

Version 4.0 (February 2014) Page 27 of 35 Author: NC, based on original work by JT.

Click on OK to complete the setup.

vi. Confirm access to the just configured URL using a fresh Web browser window.

You should now receive a warning message like the one below.

On this, tick the I accept the risk check box, and then click Run .

Fig. 21 ï Security Warning Message for an Internet link

vii. The page should then load normally, and the Baby applet should run from it.

Note that a very similar configuration can be used to enable browser access to the Baby simulator held on
a network share holding the Baby applet installation on another PC on the local network.

For example: replacing the above example string http://www.davidsharp.com/baby/ in the Exception Site
List entry by the string FILE:\\\\192.168.0.106\ssem\index.htm will allow browser access to the Baby Java
simulator installation in network share ssem on the PC at address 192.168.0.106 using the browser URL
\\192.168.0.106\ssem\index.htm. (You will note that the browser URL \\192.168.0.106\ssem\index.htm
used to access the page on the remote PC is prefixed by the characters FILE:\\ in the corresponding
Exception Site List entry).

Depending on your PCôs folder layout and the security settings on them, you may also find that you need to
review your folder permissions settings so that you can save and load Snapshot and Assembler program
files at the chosen location using the simulator.

Downloading and installing the Java Runtime (if requ ired)

1. Go to http://java.com/en/download/.
2. Select the link for ñFree Java Downloadò.
3. Click on ñAgree and Start Free Downloadò.
4. Choose ñRunò to download and install the program directly.

(Alternatively, if you prefer, you can save it to your local drive and execute it manually to install later).

http://www.davidsharp.com/baby/
http://java.com/en/download/

Version 4.0 (February 2014) Page 28 of 35 Author: NC, based on original work by JT.

APPENDIX B: Baby control panel switch and button reference

Fig. 22 - The Main Baby Control Panel Buttons and Switches

The uses of the main switches and buttons on the Baby control panel (using the numeric references to their
positions in Fig. 22) are summarised below. These are fully functional on the Baby simulator, just as they worked
on the original Baby machine in 1948, and on the recreated Baby in MOSI.

The details here are at a high level, and more details of Baby switch and button operation are available in the full
SSEM Pogrammersô Reference (either http://www.digital60.org/rebuild/50th/competition/ssemref.html or the file
refman.jar that is contained in the downloaded zipfile referred to in Appendix A).

Note also that the switches and buttons that are not picked out with numbers in Fig. 22 are there to accurately
represent the physical switch layout of the original Baby in 1948, but they were not electrically connected on the
actual machine, and had no effect on the machineôs running. They similarly have no effect on operation of the
Baby simulator.

1 Line (L) switches

When running in Manual mode, these 5 switches select a line number in Store represented in binary, with a
Down switch position representing a 1, and an Up position a 0. The leftmost switch represents the least
significant digit (1ôs), and the rightmost switch the most significant (16ôs). If you look closely, you can see
that the numbers 1, 2, 4, 8 and 16 are written underneath them as a reminder.

2 Funct ion (F) switches

When running in Manual mode, these 3 switches select a Function number to be executed, represented in
binary, with a Down switch position representing a 1, and an Up position a 0. Where the function needs it,
the Line switch positions will indicate the store location information needed to perform the Function. The
leftmost switch represents the least significant digit (1ôs), and the rightmost switch the most significant (4ôs).
If you look closely, you can see the numbers 13, 14, and 15 are written underneath them as a reminder of
the positions those 3 Function bits take in a stored instruction line.

3 Monitor Display Selector Buttons

These buttons allow the display tube at the top of the control panel to be switched to show the contents of
each of the three store tubes: Select the appropriate display (Main Store, Accumulator or Control) by
pressing in one of the three red buttons: Sc for Store, A for Accumulator or C for Control. Only one of
these buttons can be pressed in at a time.

http://www.digital60.org/rebuild/50th/competition/ssemref.html

Version 4.0 (February 2014) Page 29 of 35 Author: NC, based on original work by JT.

4 STOP/RUN switch

For the continuous running of a program or function, setting this switch Up selects STOP, and setting it
Down to RUN starts the program or function defined in switches running. Also labelled CS (standing for
ñCompletion Signalò).

5 KC switc h (Key Completion)

If the program is not currently running then pressing this switch down and allowing it to return to the
horizontal causes the Baby to start processing the next instruction, either from Store (when the machine is
switched to AUTO mode), or from the Line and Function switch settings (if in MANUAL mode).

6 KLC switch (Key Line Clear)

Clears the selected Action line in the store display.

KSC switch (Key Store Clear)

Clears the whole Main Store to zeroes, deleting any programs and data held there.

KAC switch (Key Accumulator Clear)

Clears the Accumulator

7 KCC switch (Key Control Clear)

Clears both the Control and Accumulator stores.

8 KMC switch

This switch has no function on the Baby simulator, and it had none on the 1948 Baby machine.
On the MOSI Baby, it enables quick loading into store of prepared test programs from the support PC.

9 WRITE/ERASE switch

As in the description of the Typewriter (see below), this switch determines whether a "one" or a "zero" is
"typed" into the Store in the selected line when the red typewriter buttons are pressed.

10 Typewriter Buttons

The panel contains 40 red push-buttons arranged as eight columns of five buttons. The buttons are
numbered 0 to 31 starting at top left and running down a column and then down succeeding columns from
left to right. Only the first 32 buttons are connected, corresponding to the 32 bits in the store line display.
The Typewriter is normally used while the machine is at Stop, i.e. not executing instructions. If the
WRITE/ERASE Switch is at WRITE, then pushing a typewriter button causes a "one" to be written into the
corresponding digit position of the Action Line. If the Switch is at ERASE, then a zero is written to the store
position.

11 Store Displa y Line Highlighter switch

This switch has no effect on the Baby simulator. On the actual MOSI Baby, it allows a bold highlight to be
applied to the current program action line on the CRT monitor display of the Store.

12 MANUAL/AUTO switch

a) Switch at MANUAL , with STOP/RUN at RUN:

The instruction represented in the current settings of the Line and Function switches is executed
repeatedly.

Version 4.0 (February 2014) Page 30 of 35 Author: NC, based on original work by JT.

b) Switch at MANUAL , with STOP/RUN at STOP:

This sets the machine into "Single Step" mode using the physical switch settings to identify the
function to be run. This is a special case where one instruction action is executed per single step.
The instruction represented by the current setting of the Line and Function switches is executed
once whenever the KC switch is pressed down.

c) Switch at AUTO, with STOP/RUN at RUN:

Instructions are read from the Store and executed normally to run the program. All Line and
Function switches must also be set Down for this to work.

d) Switch at AUTO, with STOP/RUN at STOP:

This sets the machine into "Single Step" mode, reading the program lines in Store for the functions
to be exectuted. This is a special case of running in which just one program instruction is executed
per single step. The instruction represented by the next program instruction line in Store is
executed when the KC switch is pressed down. All Line and Function switches must also be set
Down for this to work.

To clear the Store ready for loading of a fresh program:

1. Click down (and allow to return) the switch labelled KSC at position 6.

To set t he Normal Run Setting Switch Positions for automated running of a program in Store :

1. Set STOP/RUN Switch at 4 to the Up position (STOP).
2. Set all Line switches at 1 to the Down position (selecting binary Line 31).
3. Set all Function switches at 2 to the Down position (selecting binary Function 7).
4. Set WRITE/ERASE switch to the Up (WRITE) position.
5. Set the AUTO/MANUAL switch at 12 to the Down (AUTO) position.

To start the program currently in Store running:

1. Clear the Accumulator and Control by clicking down (and allowing to return) the switch labelled KCC at
position 7.

2. Check whether the Stop neon is currently lit.
If so:
ü Press and allow to return switch KC at position 5 (which will extinguish it)
ü Press and allow to return switch KCC at position 7 (this resets the program counter).

3. Set STOP/RUN Switch at 4 to the Down position (RUN).
4. If you want to stop the program running before it automatically stops: set the STOP/RUN Switch at 4 to the

Up position (STOP). You can then choose to restart it from where it is by setting the switch Down again
(RUN), or by single-stepping it from where it was stopped by repeatedly pressing the KC switch at position
5 and allowing it to return. If you have single stepped the program in that way, you can still switch back to
automated running again by setting the STOP/RUN switch back to Down (RUN).

To Single -Step a program that is currently in Store:

1. Set STOP/RUN Switch at 4 to the Up position (STOP).
2. Set all Line switches at 1 to the Down position (selecting binary Line 31).
3. Set all Function switches at 2 to the Down position (selecting binary Function 7).
4. Set WRITE/ERASE switch to the Up (WRITE) position.
5. Set the AUTO/MANUAL switch at 12 to the Up (MANUAL) position.

When ready to single-step the program in Store:

1. Clear the Accumulator and Control by clicking down (and allowing to return) the switch labelled KCC at

position 7.
2. Check whether the Stop neon is currently lit.

If so:

¶ Press and allow to return switch KC at position 5 (which will extinguish it)

¶ Press and allow to return switch KCC at position 7 (this resets the program line counter).
3. Repeatedly press and allow to return switch KC at position 5. Each press of the switch causes the next

program instruction line to be read in and executed.

Version 4.0 (February 2014) Page 31 of 35 Author: NC, based on original work by JT.

4. Select the appropriate display (Main Store, Accumulator or Control) to watch the results of the individual
program lines executing when KC is being pressed by pressing in one of the three red buttons at position 3
(Sc for Store, A for Accumulator or C for Control).

5. If you want to switch to automated running after single-stepping part of the program, you can do this by
setting the STOP/RUN switch in position 4 to Down (RUN).

Version 4.0 (February 2014) Page 32 of 35 Author: NC, based on original work by JT.

APPENDIX C: Setting up the old Java Baby simulator

PC System requirements:

¶ Windows XP, Windows Vista, Windows 7, Windows 8 or Windows 8.1.

¶ A Java Runtime installation of version 1.2 or later. (If not already installed, see the section below on
ñDownloading and installing the Java VM environmentò).

To download and set up the original Baby Simulator:

1. The original simulator itself (originally written in 2001) may be downloaded from David Sharpôs archive
website by going to the following link

1
: http://www.davidsharp.com/baby/baby.zip.

2. A message similar to the one shown will appear (the exact message will vary depending on the version of
your Operating System and web browser). Choose the option to Save as , and store the zip file in a
suitable folder on your PCôs local drive, noting where this is.

Fig. 23 - IE Download Prompt

3. Find the just downloaded BABY .ZIP file on your PCôs local drive and extract all of its contents (as shown

below) into a new folder on your local drive (for example C:\Babysim).

Fig. 24 - Zip File Contents

4. Once all the files are extracted under the chosen folder, the Baby.class Java file in the simulator sub-

folder is the one that needs to be run to start the simulator. The following steps describe how to set up a
shortcut to allow this to be easily run from the Windows Desktop.

5. Continuing the setup requires a Java VM environment to be on your PC of version 1.2 or later.

¶ To check whether you have Java installed already: Go to http://java.com/en/download/ , then
choose the link to verify the version of Java you have installed (the link is normally labelled ñDo I
have Java?ò).

¶ If you do not have Java installed already: See the section at the end on how to set up the Java VM
environment before continuing.

¶ If you do have Java installed already: Make a note of the full path of the java.exe file on your PC
(this will often be C:\Program Files (x86) \Java\jre7\bin \java.exe).

¶ Also note the path holding the just-extracted Baby.class file (in the example above, this was
C:\Babysim \simulator). You will need to type this in when setting up the shortcut later on.

6. To set up the Desktop shortcut link to be able to easily start up the emulator:

i. Right-click on a free space on the Windows Desktop, and choose New, then Shortcut .

1
 For background information, see the main page at http://www.davidsharp.com/baby/.

http://www.davidsharp.com/baby/baby.zip
http://java.com/en/download/
http://www.davidsharp.com/baby/

Version 4.0 (February 2014) Page 33 of 35 Author: NC, based on original work by JT.

ii. When the Create Shortcut window opens, click on the Browse button and navigate the folders to

the location of the installed java.exe file (as noted above), then click OK. This will enter the path to
the file for you into the location box, adding quotes around it if it contains spaces.

iii. After it does this, type in a space after it, followed by the word Baby (note that it must be typed in

with a capital ñBò and the rest in lowercase).

It should then look like the following (check particularly that there is a capital ñBò on Baby):

Fig. 25 ï Creating the shortcut

Click Next to continue.

iv. On the next screen, provide the Shortcut name on the next screen ï for example Babysim , as is
shown below:

Fig. 26 ï Completing the shortcut

Click on Finish . The shortcut appears on the Windows Desktop.

v. Before the simulator will run, you now need to change the Start in folder setting on the shortcut
you have just created.

To do that:

Á Right-click on the shortcut just created on the Desktop, then choose Properties .

Á In the window that appears, overtype the Start in setting with the path you noted to the

extracted Baby.class file, but without the Baby.class name at the end. If the path contains a

Version 4.0 (February 2014) Page 34 of 35 Author: NC, based on original work by JT.

space, you should include quotes around it. (For the example above, the result will read
C:\Babysim \simulator).

Á Change the Run setting from Normal Window to instead read Minimized .

When done, it will look like the following display:

Fig. 27 ï The completed shortcut settings

After checking, click Apply , then click OK to save it.

7. The simulator should now be runnable from the Desktop icon.

Depending on your PCôs folder layout and the security settings on the folder that you chose to extract the
simulator into, you may also find that you need to review your folder permissions so that you can save and load
Snapshot and Assembler program files at the chosen location using the simulator.

Starting the simulator:

1. Locate the Desktop icon (set up as described above) and double-click on it to open the simulator.

2. Three windows will open:

¶ A DOS command window (automatically minimised)

¶ A Baby Simulator store display and menu options window

¶ A Switch panel window

3. Leave the DOS window minimised in the background (if you close it, the simulator windows will close), then
size and drag the other two windows so that they sit side by side, as shown below:

Version 4.0 (February 2014) Page 35 of 35 Author: NC, based on original work by JT.

Fig. 28 ï The main simulator display windows

Downloading and installing the Java VM environment (if required):

1. Go to http://java.com/en/download/.
2. Select the link for ñFree Java Downloadò.
3. Click on ñAgree and Start Free Downloadò.
4. Choose ñRunò to download and install the program directly. (Alternatively, if you prefer, you can save it to

your local drive and execute it manually to install later).

http://java.com/en/download/

